Part III. Nobel Theory Lecture 13, Y Nov
Prive and Atomic Models
T is complete anxikat Z-decay with Shirk models.

DEP 15.1 Fix
$$M \models T$$
.
1) M is advance if every notage our potentical in M is included.
2) M is given if for any $N \models T$ there is an elementary embedding from M of N .
EX: $K \models ACF_5$. Then $\overline{\mathbb{Q}} \subseteq K$. So $\overline{\mathbb{Q}} \leq K$ by $\mathbb{Q}E$.
Therein BZ Assume Z is combile. Then $M \models T$ is prime for H is oblice and advance.
From $R = A \le M$. $T \models T$ is prime. Then M is oblice since T has a oblice under $(D257)$
Suppose $p \in S_n(T)$ is non-included. By OTT there is one $N \models T$ anothing p .
Since $M \leq N$, M anoth p . So M is advance.
(G=): Assume $M \models T$ is conditive p . So M is advance.
(G=): Assume $M \models T$ is conditive p . So M is advance.
(G=): Assume $M \models T$ is conditive p . So M is advance.
(G=): Assume $M \models T$ is conditive p . So M is advance.
(G=): Assume $M \models T$ is conditive p . So M is advance.
(G=): Assume $M \models T$ is conditive p . So M is advance.
(G=): Assume $M \models T$ is conditive p . So M is advance.
(G=): Assume $M \models T$ is conditive p . So M is advance.
(G=): Assume $M \models T$ is conditive p . So M is advance.
(G=): Assume $M \models T$ is conditive p . So $M \models T$. WITS $M \leq N$.
Enventorial $M \models T$ is $p \models Q$ $(M \equiv N)$. Suppose we have F_n , but $\Phi(x_1, \dots, x_{nn})$.
Is an $a \mod(F_n)$ and $dom(F_n)$ is F_n is an elementary contailing.
 $A = a - Arrandon isologing $dp^M(a_1, a_2, \dots, a_{n+1})$. (crivity since M is domice).
 $M \models T \times_{nn} P(a_1, \dots, a_n, x_{nn})$. So $N \models T \times_{nn} P(F_n(a_1), \dots, F_n(a_n), X_{nn})$.
 $B_1 \models M \models M (a_1, \dots, a_n, x_{nn})$. So $N \models T \times_{nn} P(F_n(a_1), \dots, F_n(a_n), b)$.
 B_2 Roop III.6. $T \models V \times_{1}, \dots, \times_{nn} (P(\overline{V}_n(a_1), \dots, F_n(a_n), b)$.
 S_3 $F_{nn_1} = S_n \cup P((a_{nn_1}, b)]$ is probable dementary.
 $I$$

Theorem 133 Assum Z is coulder. TFAE:
i) Thus - prime model:
ii) Thus - prime model:
iii) Thus a prime model:
iii) Fir -11 (n-2), the isolubility types in Sp(T) are dense.
Proof ble have (i)
$$\leq \otimes$$
 (ii) by Thin 172 (and ESI #9)
(iii) \Rightarrow (iii). Let MET be above: Fix N=1, and on Z-Rommle $\Phi(x)$ at $[\Psi(x)] \neq \beta$
WTS $[\Psi(x)]$ contrins on isolubility type. Note $M \models \exists x^{n}P(x)$. Choose $\overline{a} \in M^{n}$ st
 $M \models \Phi(\overline{a})$. Then $t_{p}P(\overline{a})$ is isolubilit (since M is above) and it is in $[\Phi(\overline{x})]$.
(iii) \Rightarrow (iii). [Herdein construction, non-examinable]
hat $Z^{*} = Z \lor \{C_{1}, C_{2}, C_{1}, ..., Y$ hat $f_{0}, P_{1}, P_{2}, ...,$ ensumer to all Z^{*} -andrenes.
We build $T^{*} = T \lor \{\overline{P}(0, \Theta_{1}, \Theta_{2}, ..., Y)$ is complete, sublicity has the witness property
and such that the Herdein model & T* is advance. One
Cases MH $\in \{3i+1, 3i+2\}$ are identical to graft & OTT.
 $Cnx \quad MH = \overline{3i+3}$: Choose $N \ge i$ stall new constant used in One creation
 $\Re(x) = (I(\overline{x})) \neq M$. By (iii), there is some isolebult $p \in [\Psi(\overline{x})]$.
Let $\Psi(\overline{x}) \Rightarrow M = H (X_{1}, ..., X_{n})$ be an Z-Bounder st Θ_{m} is $\Psi(C_{1}, ..., C_{n})$.
 R_{2} induction $T \cup SO_{m}$? is consistent. So $T \supseteq \Im(Y(\overline{x}_{1}, ..., X_{n})$? is consistent, and
so $[\Psi(\overline{x})] \neq M$. By (iii), there is some isolebult $p \in [\Psi(\overline{x})]$.
Let $\Phi(\overline{x})$ induct p . Let Θ_{m+1} be $\mathcal{O}_{m} \wedge \Psi(C_{1}, ..., X_{n})$? is consistent; and
so $[\Psi(\overline{x})] \neq M$. By (iii), there is some isolebult $p \in [\Psi(\overline{x})]$.
Let $\Phi(\overline{x})$ induct p . Let Θ_{m+1} be $\mathcal{O}_{m} \wedge \Psi(C_{1}, ..., C_{m})$.
Thus $N \models T \cup S \Theta_{m+1}$?.
Now let $M \models T^{*}$ be the theorem model. WITS M is advance (-s an Z-structure).
Now let $M \models T^{*}$ be the theorem model. WITS M is advance (-s an Z-structure).

For arbitrarily large n, we have
$$P(X_{1,...,}X_{n})$$
 indetens $p \in S_{n}(T)$ rt
 $T^{*} \vdash P(C_{1,...,}C_{n})$. So $f_{p}^{M}(C_{1}^{M},...,C_{n}^{M})$ is isolated $Y_{1} n \ge 1$.
Lateral large
For any hope à from M . WTS $f_{p}^{M}(=)$ is isolated.
 WLO_{6} . He conditates if the hope are distinct
 (a,b,c) isolated by $Y(X_{1},X_{2},X_{3})$
 (a,c,b,c) isolated by $Y(X_{1},X_{2},X_{3})$ for som n
General Fract: Given any M and $a_{1,...,a_{n}} \in M$, if $f_{p}^{M}(a_{1,...,a_{n})$ is
isolated by $P(X_{1,...,}X_{n})$, then $Y \notin J \equiv f_{1,...,n}$,
 $f_{p}^{M}((a_{1})_{1\in \mathbb{Z}})$ is isolated by $(\Im X_{1})_{1\notin \mathbb{Z}} P(X_{1,...,}X_{n})$.
 T