Part III Model Theory, Lecture 16, 16 Nov

Theorem 161 (V-3H 1959)
Suppose T := a complete X-theng: I alle I(T, No) + 2.
Part Assume I(T, Xi)=2. By Rog 14.4, Thus a prime multi M and a alle schedule
model N. By Thim 152. 3 some non-indulid peSn(T) & some no.1. So M owith p.
and 3 TeENⁿ network (ES3 #3). So T* has a prime multi B by Thim H2(Q).
Net A = B)Z = T. So A realizes p. So
$$A \neq M$$
. So $A \cong N$.
S B = N (ES3 #3). So T* has a prime multi B by Thim H2(Q).
Net A = B)Z = T. So A realizes p. So $A \neq M$. So $A \cong N$.
S B = N (ES3 #3). So the prime multi B T* is suburked. So T* is
N-advessed by Thim 152. So T is X-categorial by Car 15.4. Y. [].
Uncountelle Suburked Hold 17
Theorem 162. For any infinite M and $M > |X| + N_0$, there is an $N \doteq M$ st
N is Rt-suburated and $|N| \leq |M|^R$.
Part R R X 12/1+No. Notation: $X \subseteq_R Y$ means $X \in Y$ and $|X| \in R$.
Chaim: For any M, there is $N \doteq M$ at $|N| \in |M|^R$ and N realizes all dypes
in $S_1^M(A) \neq A \in_R M$.
Part wheath F. M & see eR is $|M|^R$ and if $|A| eR$, then $|S_1^m(A)| e 2^R e |M|^R$.
Ensured all such types on $(pa)_{del[M]T}$ (if ordinal). Build elementary chain $(M_n)_{eeqnops}$
st $M_0 = M$, the limit $M = \sum_{i \in M} M_i$ and $M_{ext} \succeq M_i$ realizes $p_i = t$
 $M_0 = M_0$. So that $M = \sum_{i \in M} M_i$ and $M_{ext} \simeq M_K$ realizes $p_K = t$
 $M_0 = M_0 + 1/2$ (by Pag 8.4). At $N = \bigcup_k M_k$ realizes $p_K = t$
 $M_{ext} = M_0 + 1/2$ (by Pag 8.4). At $N = \bigcup_k M_k$. Then $|N| \in |M|^R$
and N realizes all $p_k = M$.
Fix M . Now build elementary chain $(M_K)_{A = CR} + t = N_K = U_K M_K$. Then $|N| = |M|^R$
and N realizes all $p_k = M$.

 $\mathcal{N}_{o}=\mathcal{M}$ 2. α limit, $N_{\alpha} = \bigcup_{i < \alpha} N_i$. 3. Given de x^+ , let $N_{x^{+1}} \stackrel{>}{=} N_d$ st $|N_{d^{+1}}| \in |N_d|^{\mathcal{R}}$ and $N_{d^{+1}}$ realizes all types our all set A Ex Nx. (by the Chaim). Let N= UN. By induction on a, INI = IMIK. N is Rt-solutated since $A \in \mathcal{R} N \implies A \in \mathcal{R} N_{\mathcal{A}}$ for some $\mathcal{A} \in \mathcal{R}^{+}$. Let T be an Z-theory with infinite models. Corolley 16.3: If N=121t and 2x = nt, then T has a solurated makel of size N. PF: By 16.2, Thus a k^+ soluted model if size $(|Z|+N_0)^k = 2^k = k^+$. Fact: If R>121+ No is regular and 22 ER Y JCK, then I has a sometril mallel it size R. Basic Facts 1) IF $\mathcal{M} \equiv \mathcal{N}$ $|\mathcal{M}| = |\mathcal{N}|$, and \mathcal{M}, \mathcal{N} are sodurated, then $\mathcal{M} \cong \mathcal{N}$. (ES3 #4). 2) Suppose K>121+18. Then M is K-scourated : If M is K-homogeneous and V N=M, if INICK then Nelementally embeds in M. "M is K-universal!" Stability let The a complete theory with infinite malels. Vet 16.4 Given R > 121+ No, we say T is K-stade if Y MFT, IMI=R

we have $|S_1(M)| = R$. T is stable if it is R-stable for som $R \ge |Z| + N_0$.

Example 16.5
(1) ACFp. TFDAG are Resteble
$$\forall R \ge N_0$$
. (Re Example 93)
(2) $T = Th(\mathbb{Z}, +, 0, 1, (\equiv_n)_{n\geq 2})$ when $X \equiv_n y$ iff $\exists z (x - y = nz)$. T has QE.
Fix $M \models T$. Given $f: fprimes 3 \rightarrow N$ so $0 \le f(n) < n$, we have a complete 1-type
 $P_F = f \times \neq a: a \in M \ J \cup f \ X \equiv_n f(n) : n is prime \ J \in S_1(M)$.
Ey QE, $S_1(M) = f + p (^{o}/M) : a \in M \ J \cup fp \ J_F$. So $|S_1(M)| = |M| + 2^{N_0}$.
Thus T is R-stable iff $R > 2^{N_0}$.

(3) If $M \neq RG$ then $|S_1(M)| = 2^{|M|}$ (Ex 9.4). So RG is not stable.