Part III--Molel Theory-Rerieu
6) a) $M F$ any universt conregunce of T

Show M embelt in a malel of T
$\omega T \delta: T \cup D_{\text {iag }}(\mu)$ has a malel.

St $\operatorname{TU}\left\{\varphi\left(a_{1}, \ldots, a_{n}\right)\right\}$ is inconsistent.
So $\quad T \vDash \neg \exists \bar{x} P(\bar{x})$

$$
T \neq \frac{\forall \bar{x}+P(\bar{x})}{\text { nnversd Eantince }} \quad \text { (Generaticition) }
$$

So $M \neq \forall \bar{x} \rightarrow \varphi(\bar{x}), \quad \psi_{x}$
b) M is a valel f arg existentid conseguence of T.
wTS: $\exists \mathcal{N F T}$ that embals in an elementary extecisin \& M.
Gocl: Find $\mathcal{N}_{F} T$ st $T_{M}(\mu) \cup D_{\text {iag }}(\mathcal{N})$
Step1 Get risht N.
Let $\Sigma=\left\{\neg \exists \bar{x} \psi(\bar{x}): M=\neg \exists \bar{x} \psi(\bar{x}) ; \psi(\bar{x}) g^{4}\right.$ L2Rormal $\}$.
WTS: TUE hes a malel.
Fix $\psi_{1}(\bar{x}), \ldots, \psi_{n}(\bar{x})$ g.f. st $\neg \exists \bar{x} \psi_{i}(\bar{x}) \in \sum \quad \forall i$.
wis $T \cup\left\{\neg \exists \bar{x} \psi_{1}(\bar{x}), \ldots, \neg \exists \bar{x} \psi_{n}(\bar{x})\right\}$ is sadifichle.
Supponat. Then $T \vDash \exists \bar{x} \psi_{1}(\bar{x}) v \ldots v \exists \bar{x} \psi_{n}(\bar{x})$

$$
\begin{array}{r}
\text { e. } T \neq J_{\bar{x}}\left(\psi_{1}(\bar{x}) v \ldots v \psi_{n}(\bar{x})\right) . \\
\text { So } \mu_{F} \neq \exists_{\bar{x}}\left(\psi_{1}(\bar{x}) v \ldots v \psi_{n}(\bar{x})\right) .
\end{array}
$$

So $\quad \mu \neq \partial \bar{x} \psi_{1}(\bar{x}) v \ldots \psi_{n}(\bar{x})$
S. $\mu \vDash \exists \bar{x} \psi_{i}(\bar{x})$ for som $1 \leq i \leq n$.

But $\mu_{F} \sim \exists_{\bar{x}} \psi_{i}(\bar{x})$ by defif \sum q
$\operatorname{Let} N F T \cup \mathcal{E}$.
Skp 2 Show $T_{M}(M) \cup \operatorname{Diag}(\mathcal{V})$ is satisisible/(consistent)
Fix a q.\&. \mathcal{L}-dormat $\psi\left(x_{1}, \ldots, x_{m}\right)$ and $c_{1}, \ldots, c_{m} \in N$ st $\psi\left(c_{1}, \ldots, c_{m}\right) \in \operatorname{Ding}(N)$
WTS: $\operatorname{Th}_{\mu}(M) \cup\left\{0 \psi\left(C_{1}, \ldots, c_{m}\right)\right\}$ is consitent.
If not, then $T_{\mu}(M) \vDash \neg \partial \bar{x} \psi(\bar{x})$.

$$
\begin{aligned}
& \text { ie } M F \neg \exists_{\bar{x}} \psi(\bar{x}) \\
& \text { So } \neg \exists \bar{x} \psi(\bar{x}) \in \sum \\
& \text { So } N F \neg \exists \bar{x} \psi(\bar{x})
\end{aligned}
$$

But $N \neq \psi(\bar{c})$.
10) $M, N F T, \quad M \leq N$

Suppose $p \in S_{n}(M)$ is definable
[ie. $\forall \mathcal{Z}$-8ormate $P\left(x_{1}, \ldots, x_{n}, \bar{y}\right) \quad \exists \mathcal{Z}_{M}$-formuck $\psi(\bar{y})$ st $\forall \bar{b} \in M^{\bar{y}}, f(\bar{x}, \bar{b}) \in p$ iff $M \vDash \psi(\bar{b})$.
WTS: \exists a uague $g \in S_{n}(N)$ st g exteals p ard g is d\&indbu w M
Proof: Given $P(\bar{x}, \bar{y})$ let $d P(\bar{y})$ be the \mathcal{Z}_{M} - ormuk 2 that givi a P dfinition for p.
Define $g\left(\right.$ sut of $\mathcal{L}_{N}-$ fomulas in $\left.\bar{x}\right)$ st given $f(\bar{x}, \bar{y})$ anl $\bar{b} \in N^{\bar{\delta}}$
$P(\bar{x}, \bar{b}) \in g$ if $\quad N \vDash \operatorname{lP}(\bar{b})$.

* g is complete since $N F \neg d \varphi(\bar{b})$ ir $N \vDash \operatorname{N} \varphi(\bar{b})$
* g is consistent. ETS: every freak in g is consistent. (check:

$$
\begin{aligned}
& \quad d(\varphi \wedge \psi)(\bar{y}) \equiv d \varphi(\bar{y}) \wedge d \psi(\bar{y})) \\
& \text { Fix } \varphi(\bar{x}, \bar{b}) \in g . \quad \text { Note: } M \vDash \forall \bar{y}\left(d \varphi(\bar{y}) \rightarrow \bar{y}_{\bar{x}} \varphi(\bar{x}, \bar{y})\right) .
\end{aligned}
$$

So \mathcal{N} sadibiee the. Since $N F d P(\bar{b})$, we know $P(\bar{x}, \bar{b})$ ir consistent. We han $g \in S_{n}(N)$.
q is definable ow M by construction.

* q extends p : $F i x ~ P(\bar{x}, \bar{b})$ with $\bar{b} \in M$

Then $P(\bar{x}, \bar{b}) \in p$ if $\mu \vDash d \varphi(\bar{b})$

$$
\begin{aligned}
& \text { if } N \neq d P(\bar{b}) \\
& \text { if } \quad P(\bar{x}, \bar{b}) \in q .
\end{aligned}
$$

* g is unique: Suppose $g^{\prime} \in S_{n}(N)$ is another extension of p that is dubiobbe over M. WTS $q=q$! Fix $\varphi(\bar{x}, \bar{y})$. We show $d \varphi(\bar{y})$ is a P-debinition for g^{\prime} (and so $g=g^{\prime}$). Let $\psi(\bar{y})$ as on $\mathcal{L}_{M^{-}}$formal which defines g^{\prime} wat $P(\bar{x}, \bar{y})$. Given $\bar{b} \in M^{\bar{y}}$ we have

$$
M \neq \dot{\psi}(\bar{b}) \text { if } P(\bar{x}, \bar{b}) \in q^{\prime} \text { if } P(\bar{x}, \bar{b}) \in g \text { if } M=\| \varphi(\bar{b}) \text {. }
$$

S. $\mu_{F} \forall \forall \bar{y}(d \phi(\bar{y}) \leftrightarrow \psi(\bar{y}))$

So N scoussies this.
8) Prove T is $\lambda_{0}^{T}-\cot S_{n}(T)$ is 8inite $\forall n \geqslant 1$. (\Rightarrow) : Suppose J_{n} st $S_{n}(T)$ is intinte.

Since $S_{n}(T)$ is compact Hansdoiff, Z non-islated $p \in S_{n}(T)$.
By OTT ∂ etble molel $\mathcal{M}=T$ omitting p.
Also 3 ctble $N \neq T$ reclizing p s. $M \neq N$.
(\Longleftarrow) : Assume $S_{n}(T)$ is firite $\forall n \geq 1$. Then all types ore ϕ are iss)ctel. Fix ctble $M, N \neq T$. $S_{a y} M=\left\{a_{n}: n \geq 0\right\}$ and $N=\left\{b_{n}: n \geq 0\right\}$ Buill pardid elematry $\left(\&_{n}\right)_{n \geq 0}$ ot $\operatorname{dom}\left(\&_{n}\right) \subseteq M$ is fink $\forall n$ and $a_{n} \in \operatorname{lom}\left(\&_{n+1}\right), b_{n} \in \operatorname{Im}\left(f_{n+1}\right) \quad \forall n$.
Then $\&=V \&_{n}$ will be isomiphism from $M \alpha N$.
Let $\&_{0}=\phi$ (elewntey since $M, N \vDash T$)
Given f_{n}. Ennmarte $\operatorname{dom}\left(f_{n}\right)=\left\{c_{1}, \ldots, c_{m}\right\}$. Let $\theta\left(y_{1}, \ldots, y_{m}, x\right)$ isolth $t_{p}\left(C_{1}, \ldots, c_{m}, a_{n} / \phi\right) \in S_{m+1}(T)$.

$$
\mu_{k} \exists x \theta(\bar{c}, x) \text { So } N \neq \exists x \theta\left(f_{n}(\bar{c}), x\right)
$$

So pick $d \in N$ st $N \in \theta\left(f_{n}(\bar{c}), d\right)$.
So $\theta(\bar{y}, x) \in \operatorname{tpp}\left(f_{n}(\bar{c}), d / \phi\right)$
So $\quad \operatorname{tp}\left(f_{n}(\bar{c}), l / \phi\right)=t_{p}\left(\bar{c}, a_{n} / \phi\right)$
So $f_{n} \cup\left\{\left(a_{n}, d\right)\right\}$ is pordel elementery.
Similarl, find $e \in M$ st $\&_{n} \cup\left\{\left(a_{n}, d\right),\left(e, b_{n}\right)\right\}$ is pardel elementoz. (Consider frimule is. ating $_{f_{n+1}} \operatorname{tp}_{p}\left(f_{n}(\bar{c}), d, b_{n} / \phi\right)$)
2) $\frac{\text { Netain }}{\mathcal{N}} \neq T, \quad P(\overline{\bar{x}}, \bar{b}), \quad P(\mathcal{N}, \bar{b}):=\left\{\bar{a} \in N^{\bar{x}}: \mathcal{N} \vDash P(\bar{a}, \bar{b})\right\}$.

is definal b_{7} an \mathcal{Z}_{M}-formele $\psi(\bar{x})$
wis $\exists \bar{c} \in M^{\bar{o}}$ st $\varphi(\mathcal{N}, \bar{c})=\varphi(N, \bar{b})$

$$
\begin{aligned}
& N \neq \exists \bar{y}(\forall \bar{x}(\varphi(\bar{x}, \bar{y}) \leftrightarrow \psi(\bar{x}))) . \\
& M \vDash
\end{aligned}
$$

Choon $\bar{c} \in M^{\bar{s}}$ н $\left.\quad \mu_{F} \forall \bar{x}(\varphi(\bar{x}, \bar{c}) \leftrightarrow \psi(\bar{x}))\right)$

$$
\begin{gathered}
\text { So } \mathcal{N} F \\
\text { So } \quad \mathcal{N}_{k} \forall \bar{x}(\varphi(\bar{x}, \bar{b}) \leftrightarrow \varphi(\bar{x}, \bar{c})) .
\end{gathered}
$$

b) Fix $P(\bar{x}, \bar{y})$. A asame ont fintely may sats of the form $P(N, \bar{b})$ $\& \bar{b} \in N^{\bar{y}}$. $\overline{F x} \quad M \leq N$.
wTS $\forall \bar{b} \in N^{\bar{y}}, \quad \varphi(N, \bar{b})$ is dofindele using an \mathcal{Z}_{M} - oomale.
Ther: $k \geq 1$ st
$N \neq \mathcal{J}^{2+}, \ldots \bar{y} k$$\forall \bar{y} \bigvee_{i=1}^{k} \forall \bar{x}\left(\varphi(\bar{x}, \bar{y}) \leftrightarrow P\left(\bar{x}, \bar{y}_{i}\right)\right)$
So MF
s. $\exists \bar{b}_{1}, \ldots, \bar{b}_{k} \in M^{\bar{j}}$ of

$$
\mu_{k} \forall \bar{j} V_{i=1}^{k} \forall \bar{x}\left(\varphi(\bar{x}, \bar{y}) \leftrightarrow \varphi\left(\bar{x}, \bar{b}_{i}\right)\right)
$$

So $N \neq$
So $\forall \bar{b} \in N^{\overline{0}} \quad \partial \quad 1 \leq i \leqslant k$ st $\varphi(N, \bar{b})=\varphi\left(N, \overline{b_{i}}\right)$
c) Suppose $M \leqslant N$ ad N is $|M|^{+}$-saturated.

Supposian $P(N, \bar{b})$ definable using on \mathcal{L}_{μ}-formula. \#
WTS: Only \&initely many sets \& the form $P(N, \bar{b})$.
Prof: Suppose \exists infinite, many such ats. Consider a partial type in \bar{y}

$$
T(\bar{y})=\left\{\exists \bar{x}(P(\bar{x}, \bar{y}) \leftrightarrow \neg P(\bar{x}, \bar{b})): \bar{b} \in M^{\bar{y}}\right\} .
$$

UTs $P(\bar{y})$ is realized in N
If $\bar{c}=T$ the $d(N, \bar{c}) \neq \phi(N, \bar{b}) \quad \forall \quad \bar{b} \in M^{\overline{0}}$ yo ,
By saturation, ETS $T(\bar{y})$ is \&initely satiable in \mathcal{N}.
But this follows from 中\#.

ADDED AFTER CLASS

1) (\Rightarrow) : Immediate from definition of $M \leqslant N$.
\Leftrightarrow : WTS: Foray $\mathcal{Z - R o m a n k} \varphi\left(x_{1}, \ldots, x_{n}\right)$ and $\bar{a} \in M^{n}, \mu_{1} \varphi(\bar{a})$ i\& $\mathcal{N} F \varphi(\bar{a})$.
Induction on formulas: If $\varphi(\bar{x})$ is atomic then result follows since $M \leq \mathcal{N}$.
Conjunctions + negations are easy.
Assume the result for $P\left(x_{1}, \ldots, x_{2}, y\right)$ ant con sided $\exists y \varphi(\bar{x}, y)$. Fix $\bar{a} \in M^{n}$.
If $N \neq \exists_{y} P(\bar{a}, y)$ then $\mu=\exists_{y} P(\bar{a}, y)$ by our main assumption.
Conversely, $M \neq \partial_{y} \varphi(\bar{a}, y) \Rightarrow \mu_{1} \rho \varphi(\bar{a}, b) \varepsilon_{\text {or }} \operatorname{sme} b \in M$,

$$
\begin{aligned}
& \Rightarrow N \vDash \varphi(\bar{a}, b) \text { \&or some } b \in M \quad \text { (by induction) } \\
& \Rightarrow N \vDash \varphi(\bar{a}, b) \text { \&or some } b \in N \\
& \Rightarrow N \vDash \exists_{y} \varphi(\bar{a}, y) \text {. }
\end{aligned}
$$

3) First note that each μ_{i} is a gerah

WIS: $\exists i$ st M_{i} io a Redo gash. Suppose not. Then for all i, \exists Prate disjoint $A_{i}, B_{i} \leq M_{i}$ st $\not \equiv \subset c \in M_{i}$ w. th $R^{\mu_{i}}(a, c) \forall$ a $\in A_{i}$ all $\neg R^{\mu_{i}}(b, c) \forall b \in B_{i}$, let $A=A, \ldots \cup A_{n}, B=B, \cup \ldots \cup B_{n}$. So A, B are fart and $A \cap B=\phi$ sue $A_{i} \cap B_{i}=\phi \forall i$ and $M_{i} \cap M_{j}=\phi \forall i \neq j$. Sine $M_{F} \mathbb{R} G, \forall c \in M$ st $\mathbb{R}^{\mu}(a, c) \forall a \in A$ and $\neg R^{\mu}(b, c) \forall b \in B$. Fix $i \leq n$ st $c \in M_{i}$. Sine $\mu_{i} \leq M$, ar hare $R^{\mu_{i}}(a, c) \forall a \in A_{i}$ and $\neg R^{\mu_{i}}(b, c) \notin b \in B_{i}, q$
4) Assume T has $Q E$ and \& $M, N \in T$ with $M \leqslant \mathcal{N}$. WTS $M \leq \mathcal{N}$. Fix an \mathcal{L}-Rormuk $\varphi\left(x_{1}, \ldots, x_{n}\right)$ and $\bar{a} \in M^{n}$. WTS $M \neq P(\bar{a}): \mathcal{N} F P(\bar{a})$. Choose quantifier -ire $\psi(\bar{x})$ st

$$
T \vDash \forall \bar{x}(P(\bar{x}) \leftrightarrow \psi(\bar{x})) .
$$

5) a) If $p \in S_{n}(T)$; mn-is. ${ }^{2}$ tel then \exists coble $\mu_{1} T$ omitting p.
b) Fix $g=\left\{\psi_{1}(\bar{x}), \ldots, \psi_{k}(\bar{x})\right\} \leq p \quad\left(e a h \psi_{i} ;\right.$ an \mathcal{Z}_{A}-名malk). Fix $\mathcal{N} \geq M$ and ai N^{n} st $\bar{a} F p$. Then $\mathcal{N}_{F} \psi_{i}(\bar{a}) \quad \forall i$. So $\mathcal{N}_{F} \exists \bar{x} \bigcap_{i=1}^{k} \psi_{i}(\bar{x})$. So $\mu_{k} J_{\bar{x}} \bigcap_{i=1}^{k} \psi_{i}(\bar{x})$, as desired.
c) Suppose $p \in S_{n}^{\mu}(A)$ is isolated. Fix an \mathcal{Z}_{A}-formate $P(\bar{x})$ isolating p. Then $\exists \bar{a} \in M^{n}$ st $M_{k} P(\bar{a})$ (by part (b)). $\delta_{0} t_{p}^{\mu}(\bar{a} / A) \in S_{n}^{\mu}(A)$ contions $f(\bar{x})$, which imples $t_{p}^{\mu}(\bar{a} / A)=p$ sine f islets p. So a np.
 $p \in S_{n}(T)$ is nn-isolad. B_{y} IT, $\exists \mathcal{N} F T$ omitting p. Since $M_{\text {is prime, we may assume } ~} \mu \leqslant N$. So p is also omithel in M.
7) [Note: I will omit details. This wall be a long problem for an exam.]

Claim: Tis a complete they with QE. (model later)
Proof: It suffices to pore this for my reluct of T to a fink soblingnage. Tie, we may assume that for some fixed $n \geq 1, T$ is The thor of DLO $+C_{0}<c_{1}<\ldots<C_{n-1}$
No. six - Fink Lestmcure A, which embeds in some moll \&f T, and show TUPiag (A) is complete. (This gives QE by our charactericton from lecture, and complteress of T ute $A=\phi$) To show TUDiag (A) is conglek, we use Naught's Test. In particular, we show $T \cup D_{i c g}(A)$ is X_{0}-categorical (note this theory hes no finite males). Fix coble $M, N \in T \cup D i a g(A)$. WLO6 $A \leq M$ and $A \leq N$. Led R_{0} be the identity on A. Then f_{0} is a pardicl embuedling from $M \perp N$ with fiat doncins. Now do usual back ane
forth between M ald N starting with f_{0} (note that $c_{i}^{M}=c_{i}^{N}=c_{i}^{A} \in A \forall i$ so me dent need to worry about the constants. I/

Claim: T has 3 countable moles.
Posit: See lecture notes. The models are μ_{1} st $\left(c_{n}\right)$ unbuanel, μ_{2} st $\left(c_{n}\right)$ bounded but $\omega \%$ supremo, and μ_{3} st $\left(c_{n}\right)$ mas supreme.
Claim: μ_{1} is the prime mall.
Poon: Fix $\mathcal{N} F T$. WTS: \exists m elenennery empaling from $\mu_{1}+\mathcal{N}$. By QE, it suffices to show \exists an embelling from M_{1}, N. Let $M_{1}=\left\{C_{n}^{\mu_{1}}: n \geq 0\right\} \cup\left\{a_{n}: n \geq 0\right\}$. We build $\left(\mathcal{F}_{n}\right)_{n \geq 0}$ parcel emballings from $M_{1}+\mathcal{N}$ ot $\operatorname{dom}\left(q_{n}\right)=\left\{c_{k}^{\mu_{1}}: k \geq 0\right\} \cup\left\{a_{k}: k<n\right\}$ Then $f=U\left\{_{n}\right.$ is desire embelling.
Start with $f_{0}: c_{n}^{\mu} \mapsto C_{n}^{N} \quad \forall n$. Given f_{n}, let $I_{m}\left(f_{n}\right)=\left\{c_{k}^{N}: k=0\right\} \cup\left\{b_{k}: k<n\right\}$ whee $f_{n}\left(a_{k}\right)=b_{k}$
Choose l st $c_{l}^{\mu_{1}}>a_{k} \vee k \leq n$. Then $b_{k}<c_{l}^{N} \forall k<l$ Choose $b_{n} \in N$ satisfy the same order type amend $c_{0, \ldots}^{N}, \ldots c_{l}^{N}, b_{0}, \ldots b_{n-1}$

Claim: M_{2} is saturated.
Poof: Fix finite $A \subseteq M_{2}$ and $p \in S_{1}^{H_{1}}(A)$. WTS p is recited in M_{2}. $B_{y} Q E$, p is complexly determine by the inlucal matin $A \cup\left\{C_{n}^{\mu_{2}}: n \geq 0\right\}$
 are reciuel in $\mu_{3} a$ in the case of DLO.
Care 2: p entrains $x>c_{n}$ for all n ≥ 0. Let $A_{0}=\left\{a \in A: a>c_{n}^{M_{3}} \forall n\right\}$.
Case 2a: p contains $x \geq a$ hor some $a \in A_{0}$. Then p letomed $b y$ cut in the finitiset A_{0}, hence is recited.
Care 2b: p Contains $x<a$ for $d l a \in A_{0}$. So p is determined by: $x>c_{n} \forall n$ and $x<a \quad \forall a \in A_{0}$.
Since $\left(c_{n}^{\mu_{3}}\right)$ has no sup, there ir some $b \in M_{3}$ realizing this cut.
9) Fix $p \in S_{1}(M)$. UTS: p is definable art $\varphi(x, y)$.

Case 1: $\forall a \in M, \varphi(x, a) \notin p$. Then $y \neq y$ is a P-definition \&or p.
Case 2: $\exists a \in M, \varphi(x, a) \in p$ We show $\varphi(a, y)$ is a φ-difintin \&o $?$
Fix $b \in M$. If $\varphi(x, b) \in p$ then $\{\varphi(x, a), \varphi(x, b)\}$ is consistent ant so $\mu_{k} \varphi(a, b)$ sine φ is an equivalence relation. Conversely, if $\varphi(a, b)$ bole then $\varphi(x, b) \in p$ since $\{\varphi(x, b), q \varphi(x, a)\}$ is inconsistent.

Remark: One can show that $P(x, y)$ is stable. So this exercise dis \&illows from FTS (ouccill).

