1) a) Fix $g, h \in H_{x}^{p}$. We first show $g^{-1} \in H_{x}^{p}$. Observe: $g^{-1} \in H_{x}^{p} \Leftrightarrow$ $\forall a \in G, a X \in p, \quad a X \in g^{-1} p \Leftrightarrow \forall a \in G, a X \in p ;$ 报 $g a X \in p$ $\Leftrightarrow \forall b \in G, g^{-1} b X \in p$ i\& $b X \in p \Leftrightarrow \forall b \in G, b X \in g p ; b X \in p$ $\Leftrightarrow g \in H^{P} x$.
Now ne show $g h \in H_{x}^{P}$, ie, $\forall a \in G, a X \in p$, $a X \in g^{-1} h p$. So $\& i x a \in G$. Then

b) $[$ See lecture notes $]$
c) Suppose X is bi-genencic. Then $\exists a_{1}, \ldots, a_{n} \in G$ st $G=\bigcup_{i=1}^{n}\left(a_{i}+X\right)$. Since $G \in p$ and p is a type, $\exists 1 \leq i \leq n$ st $a_{i}+X \in p$. Let $a=a_{i}$. Now \&ix $g \in H_{X}^{P}$. Since $a+X \in p$, we have $a+X \in g+p$, ie. $(a-g)+X \in p$. So $(a+X) \cap((a-g)+X) \in p$. Since p is a type, we have $(a+X) \cap((a-g)+X) \neq \varnothing$. Fix $x, y \in X$ st $a+x=a-g+y$. Then $g=y-x \in X-X$

* Note: I suited to allative notation \&o this part of the problem.

2) For any \mathcal{Z}-formula $P(\bar{x}, \bar{y})$, we have some \mathcal{Z}_{N}-formula $d P(\bar{y})$ st $\forall \bar{b} \in N^{\bar{y}}$, $\varphi(\bar{x}, \bar{b}) \in p$ \&f $\mathcal{N} \vDash d P(\bar{b})$. Since the number of $P(\bar{x}, \bar{y})$ is $|z|+\left|\lambda_{0}\right|$, and each $d \varphi(\bar{y})$ uses only finitely many parameter from $N, \exists A \leq N$ st $|A| \leq|\mathcal{Z}|+\left|\lambda_{0}\right|$ and A contains all parameters used in all dP($\bar{y})$'s. By ES1 \#9, $\exists M \leq N$ st $|M| \leq|z|+\sum_{0}$ and $A \leq M$. Then p is definable ar M by construction.
 $\psi(\bar{x}, \bar{y}, \bar{d})$ where $\psi(\bar{x}, \bar{y}, \bar{z})$ is an \mathcal{L}-formula and $\bar{d} \in M^{\bar{z}}$. Let $d P(\bar{y} \bar{z})$ be an \mathcal{L}_{M}-formula defining p ort $\psi(\bar{x}, \bar{y}, \bar{z})$. Then $N_{F}=d \varphi(\bar{b}, \bar{d})$, and so $N F=\bar{J}_{\bar{y}} d P(\bar{y}, \bar{d})$ So $M=J \bar{y} d \varphi(\bar{y}, \bar{d})$. Rick $\bar{c} \in M^{\bar{y}}$ ot $M 1=d \varphi(\bar{c}, \bar{d})$. Then $N \vDash d \varphi(\bar{c}, \bar{d})$. So $\psi(\bar{x}, \bar{c}, \bar{d}) \in p$, ie., $\varphi(\bar{x}, \bar{c}) \in p$.
b) Suppose not. Chose $P(\bar{x}, \bar{b}) \in p$ ot $\mathcal{N} \vDash \sim P(\bar{a}, \bar{b}) \forall \bar{a} \in M^{\bar{x}}$.

We define (b_{y} induction) sequences $\left(\bar{a}_{i}\right)_{i=0}^{\infty}$ from $M^{\bar{x}}$ and $\left(\bar{b}_{i}\right)_{i=0}^{\infty}$ from $M^{\bar{y}}$ st
(i) $\varphi\left(\bar{x}, \bar{b}_{i}\right) \in p \quad \forall \quad i \geqslant 0$, and
(ii) $\mu=P\left(\bar{a}_{i}, \bar{b}_{j}\right) \quad i \geq j$.

In parisulme, (ii) curtalects stably of T. $\overline{H x} k \geq 0$ annul supper $\left(\bar{a}_{i}, \bar{b}_{i}\right)_{\nu<k}$ have

$$
\bigwedge_{i<k} \varphi\left(\bar{x}, \bar{b}_{i}\right) \wedge \bigwedge_{i<k} \neg \varphi\left(\bar{x}_{i}, \bar{y}\right) \wedge \varphi(\bar{x}, \bar{y})
$$

Then $\psi(\bar{x}, \bar{b}) \in p$ by (i) and since $\mathcal{N} \vDash \uparrow\left(\overline{a_{i}}, \bar{b}\right) \quad \forall i$ ck (by casimpation). By part (a), there is $\bar{b}_{k} \in M^{\bar{y}}$ st $\psi\left(\bar{x}, \bar{b}_{k}\right) \in p$. In partinala, $\varphi\left(\overline{,}, \bar{b}_{k}\right) \in p$. We do have $\mu_{k=} \varphi\left(\bar{a}_{i}, \bar{b}_{k}\right) \quad \forall i<k$. Since p is consistent, so is $\psi\left(\bar{x}, \bar{b}_{k}\right)$, ant so thee is $\bar{a}_{k} \in M^{\bar{x}}$ st $\mu_{k}=\psi\left(\bar{d}_{k}, \bar{b}_{k}\right)$. In particular, we have $M_{k}=\Phi\left(\bar{a}_{k}, \bar{b}_{i}\right) \forall i \leq k$. So $\left(\bar{a}_{i}, \bar{b}_{i}\right)_{i \leq k}$ satisfy (i) and (ii).
c) Let T be DLO. Choon $M=\mathbb{Q}$ and let $N \equiv M$ Le ξ_{1}-saturated. Let $p \in S_{1}(N)$ be st $x>a$ is in p for all $a \in N$.
Chain: p is defindle or M.
PP: By $Q E$ it suffices ot consider $x=y$ and $x>y$. Given $a \in N$,

$$
\begin{array}{ll}
x=a \in p & \text { if } \quad N=a \neq a \\
x>a \in p & \text { iff } \quad N=a=a
\end{array}
$$

So we can use $y \neq y$ and $y=y$ as our defining formulas (We've really shown that p is "definable over ϕ ") "I
Now, $\sin u \mathcal{N}$ is Y_{1}-satratal, $J b \in N$ st $b>a \forall a \in M$. Then $x>b$ is in p, bat $F a \in M$ st $N \neq a>b$.
4) $T_{r i x} \mu \neq T$ and $p \in S_{n}(M)$. We show p is definable Gand so T ir stable by FTS). Fix an $\mathcal{L}-$ formula $\mathcal{P}(\bar{x}, \bar{y})$. Let $N \geq M$ be st the is $\bar{a} \in N^{\bar{x}}$ st $\bar{a} F p$.
 defines $X \cap M^{\bar{b}}$ in M. Given $\bar{b} \in M^{\overline{0}}$, where $M_{F} \psi(\bar{b})$ \& $\overline{\bar{b}} \in X \cap M^{\bar{\sigma}}$ 踥 $\bar{b} \in X$承 $\mathcal{N}=P(\bar{a}, \bar{b}) \quad \varphi(\bar{x}, \bar{b}) \in p$.

