Part III - Model Theory

Types in $\operatorname{Th}(\mathbb{Z}, +, 0, 1)$.

Let $T = \text{Th}(\mathbb{Z}, +, 0, 1)$. As stated in lecture, T has quantifier elimination after adding infinitely many binary relations $(\equiv_n)_{n\geq 2}$ for congruence modulo n (i.e., $x \equiv_n y$ if and only if $\exists z(x - y = nz)$).

Now fix $\mathcal{M} \models T$. Let \mathbb{P} be the set of primes. During lecture, we fixed a function $f: \mathbb{P} \to \mathbb{N}$ such that $0 \leq f(n) < n$ for all $n \in \mathbb{P}$, and we defined the type

$$p_f := \{ x \neq a : a \in M \} \cup \{ x \equiv_n f(n) : n \in \mathbb{P} \}.$$

Then I incorrectly claimed that this determines a complete 1-type over M. But this is wrong because p_f does not determine residue classes modulo all *prime powers*. So really all we've done is shown $S_1(M) \ge |M| + 2^{\aleph_0}$.

However, the main point still stands that to complete a non-realized type over M, we just need to specify all possible congruence relations, and there are at most 2^{\aleph_0} many ways to do this. So a correct way to handle this is as follows.

Let \mathfrak{P} be the set of all prime powers, and let F be the set of functions $f: \mathfrak{P} \to \mathbb{N}$ such that:

- (i) $0 \le n < f(n)$ for all $n \in \mathfrak{P}$, and
- (*ii*) for any finite set $A \subseteq \mathfrak{P}$ there is an integer $m \in \mathbb{Z}$ such that $m \equiv_n f(n)$ for all $n \in A$.

Now, for $f \in F$, define

$$q_f = \{x \neq a : a \in M\} \cup \{x \equiv_n f(n) : n \in \mathfrak{P}\}.$$

Then q_f really does determine a complete 1-type in $S_1(M)$ since now we've fully determined all possible residue classes, and we've done so in a consistent manner. In conclusion,

$$S_1(M) = \{ \operatorname{tp}(a/M) : a \in M \} \cup \{ q_f : f \in F \},\$$

and we still see that $|S_1(M)| = |M| + 2^{\aleph_0}$.

Note that if $f \in F$ then q_f extends the type p_{f_0} defined above, where $f_0 = f \upharpoonright \mathbb{P}$. In other words, given a function $f \colon \mathbb{P} \to \mathbb{N}$ with $0 \leq f(n) < n$ for all $n \in \mathbb{P}$, if we let X_f be the set of functions in F that extend f, then $\{q_h : h \in X_f\}$ gives us all of the completions of p_f to a type in $S_1(M)$.

Those of you familiar with the profinite completion of the group of integers may see some resemblance here. This is not a coincidence, and I may have time to say something more about this later on when we talk about stable groups more generally. In the mean time, you can try to come up with a more intrinsic description of the set F.