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We work with a fixed language L. Recall the Compactness Theorem.

The Compactness Theorem. An L-theory T is satisfiable if and only if it is finitely satisfiable.

In these notes, I discuss the “original proof” of Compactness via Gödel’s Completeness Theorem.
Nothing below is examinable, and none of the definitions introduced below will be used anywhere
in the course. But since the Compactness Theorem is one of the most important tools in model
theory, it will be helpful to have some understanding of where it comes from.

The idea behind Gödel’s Completeness Theorem is to reconcile the notion of first-order satis-
faction (or “truth”) in L-structures, with the idea of formal syntactic proofs. In particular, given a
set Σ of L-formulas, and some other L-formula ϕ, one can rigorously defined the notion “Σ proves
ϕ”, written Σ ` ϕ, as follows.

Definition 1. Σ ` ϕ if there is a finite sequence ψ1, . . . , ψn of L-formulas such that ψn is ϕ and,
for all 1 ≤ k ≤ n, one of the following holds:

1. ϕk is in Σ (i.e., ϕk is an “assumption”);

2. ϕk is in a fixed set of logical axioms (discussed below);

3. there are i, j < k such that ϕj is the formula ϕi → ϕk (i.e., ϕk can be obtained from previous
formulas in the sequence via modus ponens).

In the previous definition, modus ponens is the logical rule of inference that “from A and
A→ B, one can infer B”. This a meta-principal of logical reasoning. By contrast, the set of logical
axioms, referred to in the second part of the definition, is a specific set of L-formulas. I omit a full
description of this set, to avoid getting bogged down in non-critical details, but the idea is that the
logical axioms are an explicitly defined collection of statements that are true in every structure.
Examples of logical axioms include things like (ϕ∧ψ)→ ϕ and ∀x(ϕ→ ψ)→ (∀xϕ→ ∀xψ), where
ϕ and ψ are arbitrary formulas.

The previous setup can vary from source to source. Some authors prefer to add more rules of
inference in order to make the set of logical axioms more efficient.

While the above setup applies to arbitrary formulas, let us now focus on sentences for simplicity.
We have two notions of what it can mean for a sentence ϕ to be a “logical consequence” of an L-
theory T :

1. T |= ϕ, i.e., for any L-structure M, if M satisfies all sentences in T , then M satisfies ϕ.

2. T ` ϕ, i.e., there is a formal proof of ϕ from the assumptions in T .

It turns out that these two notions are equivalent. This amazing fact was proved by Gödel in
a pair of theorems now referred to as Soundness and Completeness.
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The Soundness Theorem. If T ` ϕ then T |= ϕ.

The Soundness Theorem is not very hard to prove. One just has to verify that satisfaction in
first-order structures respects modus ponens (i.e., {ϕ, (ϕ → ψ)} |= ψ ), and that if ϕ is a logical
axiom thenM |= ϕ for any L-structureM. One should think of the Soundness Theorem as a sort
of “temperature check” for the proof system. It tells us that we haven’t accidentally included any
suspicious or problematic logical axioms.

The real work lies in the converse implication.

The Completeness Theorem. If T |= ϕ then T ` ϕ.

This result is call the Completeness Theorem because it tells us that our proof system is com-
plete in the sense that anything “true” can be formally proved. Gödel’s original proof from 1930
was highly technical, and these days one usually refers to a later proof by Leon Henkin from 1949.
What Henkin did was show that if a set T of sentences is consistent, i.e., does not prove a contra-
diction ϕ ∧ ¬ϕ for any sentence ϕ, then one can build a model of T using first-order symbols as a
universe (modulo a certain equivalence relation). This kind of construction is now called a Henkin
construction, and the proof requires the Axiom of Choice (via Zorn’s Lemma) at a key step.

We can now return to the Compactness Theorem, which is a quick corollary of the above tools.

Proof of Compactness. If T is satisfiable then it is obvious finitely satisfiable. So suppose T is not
satisfiable, i.e., there is no model M of T . Then we vacuously have T |= ϕ ∧ ¬ϕ, where ϕ is any
fixed sentence. By the Completeness Theorem, T ` ϕ ∧ ¬ϕ. This brings us to the key observation
that proofs are finite. In the formal proof of ϕ ∧ ¬ϕ from T , only finitely many assumptions from
T appear. So we have a finite set T0 ⊆ T such that T0 ` ϕ ∧ ¬ϕ. By the Soundness Theorem,
T0 |= ϕ ∧ ¬ϕ, which implies that T0 has no models. So we have found a finite subset of T that is
unsatisfiable, as desired.

Henkin’s proof of the Completeness Theorem also implies the following useful result.

Downward Löwenheim-Skolem Theorem. Let T be a satisfiable L-theory. Then T has a model
M with |M | ≤ |L|+ ℵ0.

This statement follows from the fact that, in a Henkin construction, one builds a model whose
underlying universe is L∗/∼, where L∗ is obtained by adding at most |L|+ℵ0 new constant symbols
to L, and ∼ is a certain equivalence relation.

The Soundness and Completeness Theorems will not be used explicitly in this course. On the
other hand, the Compactness Theorem and Downward Löwenheim-Skolem will be indispensable
tools. (But, once again, the proofs of these results are non-examinable.)
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