Part III - Model Theory

Exam Review Sheet 2

These exercises are primarily focused on material around stability theory. You can (and should) assume the Fundamental Theorem of Stability in each problem.

1. Suppose G is a first-order expansion of a group, and T = Th(G). Fix a definable set $X \subseteq G$ and a type $p \in S_1(G)$. Recall that we set

 $H_X^p = \{ g \in G : \text{ for all } a \in G, \ aX \in p \text{ iff } aX \in gp \}.$

- (a) Show that H_X^p is a subgroup of G.
- (b) Suppose T is stable. Prove that H_X^p is definable.
- (c) Suppose G is abelian. Prove that if X is bi-generic then H_X^p is contained in $X X := \{x y : x, y \in X\}.$
- 2. Let \mathcal{L} be a first-order language and suppose T is a complete \mathcal{L} -theory with infinite models. Suppose $\mathcal{N} \models T$ and $p \in S_n(\mathcal{N})$ is definable. Prove that there is some $\mathcal{M} \preceq \mathcal{N}$ such that p is definable over \mathcal{M} and $|\mathcal{M}| \leq |\mathcal{L}| + \aleph_0$.

(See #10 on first exam review sheet for the definition of "definable over \mathcal{M} ".)

- 3. Let \mathcal{L} be a first-order language and suppose T is a complete \mathcal{L} -theory with infinite models. Fix a model $\mathcal{N} \models T$.
 - (a) Suppose $p \in S_n(\mathcal{N})$ is definable over a model $\mathcal{M} \preceq \mathcal{N}$. Prove that for any \mathcal{L}_{M^-} formula $\varphi(\bar{x}, \bar{y})$, if there is some $\bar{b} \in N^{\bar{y}}$ such that $\varphi(\bar{x}, \bar{b}) \in p$, then there is some $\bar{c} \in M^{|\bar{y}|}$ such that $\varphi(\bar{x}, \bar{c}) \in p$.
 - (b) Assume T is stable. Suppose $p \in S_n(\mathcal{N})$ and p is definable over some $\mathcal{M} \preceq \mathcal{N}$. Prove that for any formula $\varphi(\bar{x}, \bar{b}) \in p$, there is some $\bar{a} \in M^{|\bar{x}|}$ such that $\mathcal{N} \models \varphi(\bar{a}, \bar{b})$.

[Hint: Argue by contradiction and construct the order property for $\varphi(\bar{x}, \bar{y})$.]

- (c) Give an example to show that part (c) can fail if T is unstable.
- 4. Let \mathcal{L} be a first-order language and suppose T is a complete \mathcal{L} -theory with infinite models. Given a model $\mathcal{M} \models T$ and a subset $X \subseteq M^n$ for some $n \ge 1$, we say that X is *definable in* \mathcal{M} if there is an \mathcal{L}_M -formula $\varphi(x_1, \ldots, x_n)$ such that

$$X = \{ \bar{a} \in M^n : \mathcal{M} \models \varphi(\bar{a}) \}.$$

Suppose that for any $\mathcal{N} \models T$ and any $X \subseteq N^n$ which is definable in \mathcal{N} , we have that for any $\mathcal{M} \preceq \mathcal{N}, X \cap M^n$ is definable in \mathcal{M} . Prove that T is stable.