Part III - Model Theory

Examples Sheet 1 (revised 16 Oct)

Problems 3 and 9 should be submitted through the course Moodle by 11:59 pm on Wednesday, 28 October.

- 1. Suppose T is an \mathcal{L} -theory with arbitrarily large finite models. Show that T has an infinite model.
- 2. Let T be an \mathcal{L} -theory. Show that the following are equivalent.
 - (i) T is complete.
 - (*ii*) For any \mathcal{L} -sentence φ , if $T \not\models \varphi$ then $T \models \neg \varphi$.
 - (iii) Any two models of T are elementarily equivalent.
- 3. Let \mathcal{L} be the empty language. Show that the theory of infinite sets is κ -categorical for all $\kappa \geq \aleph_0$, and use this to prove that the theory of infinite sets is complete.
- 4. Let \mathcal{L} be the language of groups. Write down a theory whose models are precisely nontrivial torsion-free divisible abelian groups, and prove that this theory is complete. (Recall that an abelian group G is *divisible* if for any $x \in G$ and n > 0 there is some $y \in G$ such that x = ny.)
- 5. Prove the *De Bruijn-Erdős Theorem*: If (V, E) is a graph and every finite subset of V is k-colorable, then V is k-colorable.
- 6. Suppose \mathcal{M} and \mathcal{N} are \mathcal{L} -structures, with $M \subseteq N$. Show that $\mathcal{M} \subseteq \mathcal{N}$ if and only if, for any quantifier-free \mathcal{L} -formula $\varphi(x_1, \ldots, x_n)$ and $a_1, \ldots, a_n \in M$, we have

$$\mathcal{M} \models \varphi(a_1, \ldots, a_n) \Leftrightarrow \mathcal{N} \models \varphi(a_1, \ldots, a_n).$$

- 7. Let \mathcal{N} be an \mathcal{L} -structure and fix a nonempty set $A \subseteq \mathcal{N}$. Let \mathcal{M} be the substructure of \mathcal{N} generated by A. Show that for any $b \in M$ there is an \mathcal{L} -term $t(x_1, \ldots, x_n)$, and some $a_1, \ldots, a_n \in A$, such that $b = t^{\mathcal{M}}(a_1, \ldots, a_n)$.
- 8. Suppose α is a limit ordinal and $(\mathcal{M}_i)_{i<\alpha}$ is a chain of \mathcal{L} -structures.
 - (a) Show that $\mathcal{N} = \bigcup_{i < \alpha} \mathcal{M}_i$ is a well-defined \mathcal{L} -structure, and $\mathcal{M}_i \subseteq \mathcal{N}$ for all $i < \alpha$.
 - (b) Show that if $(\mathcal{M}_i)_{i < \alpha}$ is an elementary chain, then $\mathcal{M}_i \preceq \mathcal{N}$ for all $i < \alpha$.
- 9. Let \mathcal{M} be an \mathcal{L} -structure, and fix $A \subseteq M$. Prove that there is an elementary substructure $\mathcal{N} \preceq \mathcal{M}$ such that $A \subseteq N$ and $|N| \leq |A| + |\mathcal{L}| + \aleph_0$.