Part III - Model Theory

Examples Sheet 2

Problems 3 and 8 should be submitted through the course Moodle by 11:59 pm on Wednesday, 11 November.

- 1. Prove that DLO is not κ -categorical for any uncountable κ .
- 2. Prove Lemma 6.1: Let T be an \mathcal{L} -theory such that, for any quantifier-free \mathcal{L} -formula $\varphi(x_1, \ldots, x_n, y)$, there is a quantifier-free \mathcal{L} -formula $\psi(x_1, \ldots, x_n)$ such that

$$T \models \forall \bar{x} (\exists y \varphi(\bar{x}, y) \leftrightarrow \psi(\bar{x})).$$

Then T has quantifier elimination.

- 3. Prove that the theory of nontrivial torsion-free divisible abelian groups (in the group language) has quantifier elimination.
- 4. Prove that DLO has quantifier elimination.
- 5. Let $\mathcal{L} = \{<\}$ be the language of orders.
 - (a) Show that the \mathcal{L} -theory $\operatorname{Th}(\mathbb{Z}, <)$ does not have quantifier elimination.
 - (b) Find a unary function $s: \mathbb{Z} \to \mathbb{Z}$ such that y = s(x) is definable with an \mathcal{L} -formula, and the $(\mathcal{L} \cup \{s\})$ -theory $\operatorname{Th}(\mathbb{Z}, <, s)$ has quantifier elimination.
- 6. Suppose \mathcal{M} is an \mathcal{L} -structure, $A \subseteq M$, and q is an *n*-type over A with respect to \mathcal{M} . Show that $q \subseteq p$ for some $p \in S_n^{\mathcal{M}}(A)$.
- 7. Suppose \mathcal{M} is an \mathcal{L} -structure and $A \subseteq M$. Verify that the topology on $S_n^{\mathcal{M}}(A)$ defined in lecture is indeed a topology. Then show that a subset $C \subseteq S_n^{\mathcal{M}}(A)$ is clopen if and only if $C = [\varphi(\bar{x})]$ for some \mathcal{L}_A -formula $\varphi(\bar{x})$.
- 8. Suppose \mathcal{M} is an \mathcal{L} -structure. Show that \mathcal{M} is κ -saturated if and only if for any $A \subseteq M$, with $|A| < \kappa$, every type in $S_1^{\mathcal{M}}(A)$ is realized in \mathcal{M} .