Part III - Model Theory

Examples Sheet 3

Problems 1 and 7 should be submitted through the course Moodle by 11:59 pm on Wednesday, 25 November.

- 1. Let T be a complete theory in a countable language.
 - (a) Show that any atomic model of T is \aleph_0 -homogeneous.
 - (b) Suppose \mathcal{M} and \mathcal{N} are countable \aleph_0 -homogeneous models of T such that, for any $n \geq 1$ and $p \in S_n(T)$, \mathcal{M} realizes p if and only if \mathcal{N} realizes p. Prove that \mathcal{M} and \mathcal{N} are isomorphic.
 - (c) Show that any two prime models of T are isomorphic.
- 2. Fix $k \geq 1$ and let $\mathcal{L} = \{\langle U_1, \ldots, U_k, c_0, c_1, c_2, \ldots\}$, where \langle is a binary relation symbol, each U_i is a unary relation symbol, and each c_i is a constant symbol. Let T_k be the \mathcal{L} -theory asserting that \langle is a dense linear order, U_1, \ldots, U_k partition the universe into dense subsets, and, for all $n \geq 0$, $c_n < c_{n+1}$ and $U_1(c_n)$. Prove that T_k is complete, and that $I(T, \aleph_0) = k + 2$. (We proved this during lecture for k = 1.)
- 3. Suppose \mathcal{M} is a κ -saturated \mathcal{L} -structure, and $A \subseteq M$ with $|A| < \kappa$. Show that \mathcal{M} is κ -saturated as an \mathcal{L}_A -structure.
- 4. Let \mathcal{M} and \mathcal{N} be saturated \mathcal{L} -structures. Prove that if $\mathcal{M} \equiv \mathcal{N}$ and $|\mathcal{M}| = |\mathcal{N}|$, then $\mathcal{M} \cong \mathcal{N}$. (In light of Proposition 11.4, you may assume \mathcal{M} and \mathcal{N} are uncountable.)
- 5. Let T be a complete \mathcal{L} -theory with infinite models, and let $\kappa \geq |\mathcal{L}| + \aleph_0$. Show that T is κ -stable if and only if for any $\mathcal{M} \models T$ and $A \subseteq M$, if $|A| \leq \kappa$ then $|S_n(A)| \leq \kappa$ for all $n \geq 1$.
- 6. Let T be a complete \mathcal{L} -theory, and let $\varphi(\bar{x}, \bar{y})$ be an \mathcal{L} -formula. Show that $\varphi(\bar{x}, \bar{y})$ has the order property with respect to T if and only if for all $k \geq 1$,

$$T \models \exists \bar{x}_1 \dots \exists \bar{x}_k \exists \bar{y}_1 \dots \exists \bar{y}_k \left(\bigwedge_{i \leq j} \varphi(\bar{x}_i, \bar{y}_j) \land \bigwedge_{i > j} \neg \varphi(\bar{x}_i, \bar{y}_j) \right).$$

- 7. Let T be a complete \mathcal{L} -theory with quantifier elimination, and suppose $\mathcal{M} \models T$. Let $p \in S_n(M)$. Show that p is definable if and only if it is definable with respect to every atomic formula $\varphi(\bar{x}, \bar{y})$ with $\bar{x} = (x_1, \ldots, x_n)$ and \bar{y} arbitrary.
- 8. Let $T = \text{Th}(\mathbb{Z}, <)$. Show that every type in $S_n(\mathbb{Z})$ is definable.