
Notes on first-order logic

G Conant

October 8, 2020

By now in your mathematical education, you have studied (or at least heard of) many areas
of mathematics which focus on the “theory” of a certain kind of abstract mathematical structure.
For example: group theory, ring theory, field theory, or graph theory. These notes will introduce
you to first-order logic, which provides a formal unifying framework, with which one can study any
of these examples (and more). Let us recall some common mathematical structures.

Example 0.1.

1. A group is a tuple (G, ∗, e) where

- G is a set,

- ∗ is a binary function on G,

- e is an element of G,

- certain axioms are satisfied.

2. An ordered ring is a tuple (R,+,−, ·, <, 0, 1) where

- R is a set,

- +, −, · are binary functions on R,

- 0, 1 are elements of R,

- < is a binary relation on R (i.e. a subset of R×R),

- certain axioms are satisfied.

3. A graph is a tuple (V,E) where

- V is a nonempty set,

- E is a binary relation on V ,

- certain axioms are satisfied.

These notes are a rough draft; feel free to email me with corrections.

1



1 Languages and Structures

Definition 1.1. A language is a set of symbols, which are divided into three kinds: function
symbols, relation symbols, and constant symbols. Formally we can write a language as

L = F ∪R ∪ C

where F , R, and C are pairwise disjoint sets of symbols. Each symbol in F is called a function
symbol; each symbol in R is called a relation symbol, and each symbol in C is called a constant
symbol. Moreover, the function symbols and relation symbols are each given an arity, which is a
positive integer. The notion of a language comprises all of this data.

In practice, we will refer to languages using the letter L. We will not often use the letters F ,
R, or C, but rather just say “f is a function symbol in L”, etc.

Example 1.2. Here are some special languages.

1. Let Lg = {∗, e} be the language of groups, where ∗ is a binary function symbol and e is a
constant symbol.

2. Let Lr = {+,−, ·, 0, 1} be the language of rings (with unity), where +,−, · are binary function
symbols and 0, 1 are constant symbols.

3. Let Lo = {<} be the language of orders, where < is a binary relation symbol. Define the
language of ordered groups Log = Lg∪{<} and the language of ordered rings Lor = Lr∪{<}.

4. Let Lgr = {E} be the language of graphs, where E is a binary relation symbol.

Note that there is no substantive difference between Lo and Lgr. Both are languages consisting
of a single binary relation symbol. But we use different symbols to emphasize different things, that
will only be given meaning later on (e.g., < is meant to represent an order, while E is meant to
represent a graph relation). Another important note is that in order to fully define a language,
each symbol must be classified as a function symbol, relation symbol, or constant symbol, and each
function symbol and relation symbol must be given an arity.

Definition 1.3. Let L be a language. An L-structure M is given by the following data:

(i) a nonempty set M , called the universe of M,

(ii) for each n-ary function symbol f in L, a function fM : Mn →M ,

(iii) for each n-ary relation symbol R in L, a subset RM ⊆Mn (i.e., an n-ary relation on M), and

(iv) for each constant symbol c in L, an element cM of M .

In the above definition, the function fM is called the interpretation of f inM (and similarly
for relations RM and constants cM). Note that we refer to f as a function symbol, while fM is an
actual function (and similarly for relation symbols vs relations, and constant symbols vs constants).
One should be careful to distinguish the symbols in a language from their concrete interpretations
in a particular structure.

Example 1.4. 1. Consider the language of groups Lg. Then we can define an Lg-structure M
where M is Z, ∗M is +, and eM is 0.

2



2. Consider the language of orders Lo. Then we can define an Lg-structure M where M is Q
and <M is the usual ordering on the rationals.

The previous examples might be somewhat misleading. In particular, the Lg-structure we
defined happened to be a group, and the Lo-structure happened to be a (linear) order. But no part
of the definition of structures implies that they have to have such nice properties. For example, we
may define an Lg-structure M where M is N, eM is 472, and x ∗M y = xy + blog(x+ y + 1)c.

2 Formulas

Our next task is to define a formal syntax for expressing properties of L-structures using the symbols
in L. To motivate the definitions, we make the following observations.

Example 2.1. Consider the Lor-structure (R,+, ·, <, 0, 1). There are many more functions and
relations, which are not in Lor, but are still expressible using the symbols in Lor. For example:

1. the unary function f : R −→ R such that f(x) = x+ 1;

2. the ternary relation R = {(x, y, z) ∈ R3 : x < y + z}.

To address this issue, we formally define how to build new functions and relations from the
symbols in a given language. In particular, we define L-terms and L-formulas, which will be
certain special strings of symbols built from:

• the symbols in L,

• the equality sign = (to be interpreted as equality),

• countably many variable symbols: e.g. u, v, w, x, y, z, or vi for i ∈ N, etc...

• the Boolean connectives ∧ and ¬ (to be interpreted as “and” and “not”, respectively),

• the universal quantifier symbol ∀ (to be interpreted as “for all”),

• parentheses and commas (for parsing and listing).

We will later observe that several other “natural” logical operators are expressible using these
symbols (see Remark 3.2).

2.1 Terms (new functions)

Definition 2.2. Let L be a language. The set of L-terms is the smallest set T satisfying the
following properties:

(i) c ∈ T for any constant symbol c in L,

(ii) v ∈ T for each variable symbol v,

(iii) if f is an n-ary function symbol in L, and t1, . . . , tn ∈ T , then f(t1, . . . , tn) ∈ T .

3



Returning to Example 2.1, we can now express the function f(x) = x+ 1 as an Lor-term. If we
pedantically follow the full formality of the definition, then this term would be:

+(x, 1).

For the sake of better comprehension, we abuse notation and write this term as x+ 1.
As suggested by Example 2.1, we will interpret L-terms as functions on L-structures. To do

this, it is convenient to think of constant symbols as “function symbols of arity 0”. We use the
convention M0 = {∅}. Given a language L, an L-structure M, and a constant symbol c in L, we
identify the interpretation cM with the 0-ary function ∅ 7→ cM from M0 to M .

Definition 2.3. Fix a language L. Let t be an L-term and letM be an L-structure. By induction
on the construction of terms, we define a function tM : Mn −→ M , where n is the number of
distinct variable symbols appearing in t.

(i) If t is a constant symbol c, then tM : M0 −→M such that tM(∅) = cM.

(ii) If t is a variable symbol, then tM : M −→M is the identity function.

(iii) Suppose f is an m-ary function symbol, and t is the L-term f(t1, . . . , tm), where t1, . . . , tm
are L-terms using variables from among v1, . . . , vn. Define tM : Mn −→M such that

tM(ā) = fM(tM1 (ā), . . . , tMm (ā)),

where, for 1 ≤ i ≤ m, tMi (ā) denotes the function tMi evaluated on the subtuple of ā corre-
sponding to the variables used in ti (which can be ∅ if ti is a constant symbol).

2.2 Formulas (new relations)

Definition 2.4. Let L be a language.

1. An atomic L-formula is a string ϕ of symbols of one of the following forms:

(i) (t1 = t2), where t1, t2 are L-terms, or

(ii) R(t1, . . . , tn), where R is an n-ary relation symbol in L and t1, . . . , tn are L-terms.

2. The set of L-formulas is the smallest set F satisfying the following properties:

(i) any atomic L-formula is in F ,

(ii) if ϕ ∈ F then ¬ϕ ∈ F ,

(iii) if ϕ,ψ ∈ F then (ϕ ∧ ψ) ∈ F ,

(iv) if ϕ ∈ F and v is a variable symbol, then ∀v(ϕ) ∈ F .

Returning to Example 2.1, we can express the relation R as the atomic Lor-formula

<(x,+(y, z)).

Once again, for the sake of comprehension and readability, we instead write: x < y + z.

Definition 2.5. Given L-formula ϕ, and a variable v used in ϕ, we say v occurs freely if v is
does not occur in the scope of ∀v. If v does not occur freely in ϕ then we say v is bound in ϕ. If
no variable occurs freely in ϕ then ϕ is an L-sentence.

Remark 2.6. By renaming bound variables, we may assume that no variable v has both free and
bound occurrences in the same formula. For example, if ϕ is the Lor-formula x < y and ψ is the
Lor-formula ∀x(x+ y > x), we will write the conjunction ϕ ∧ ψ as (x < y) ∧ ∀z(z + y > z).

We will write ϕ(v1, . . . , vn) to emphasize that ϕ is an L-formula with free variables v1, . . . , vn.

4



3 Satisfaction

We now define the interpretation of L-formulas as relations on L-structures.

Definition 3.1. Let ϕ(v1, . . . , vn) be an L-formula.

1. Given ā ∈ Mn, we inductively define what it means for ā to satisfy ϕ(v̄) in M, written
M |= ϕ(ā).

(i) If ϕ(v1, . . . , vn) is of the form t1 = t2 where t1 and t2 are L-terms using variables among
v1, . . . , vn, then

M |= ϕ(ā) ⇔ tM1 (ā) = tM2 (ā).

(ii) If ϕ(v1, . . . , vn) is of the form R(t1, . . . , tm) where R is an m-ary relation symbol and
t1, . . . , tm are L-terms with variables among v1, . . . , vn then

M |= ϕ(ā) ⇔ (tM1 (ā), . . . , tMm (ā)) ∈ RM.

(iii) If ϕ(v1, . . . , vn) is an L-formula then

M |= ¬ϕ(ā) ⇔ M 6|= ϕ(ā).

(iv) If ϕ(vi1 , . . . , vir) and ψ(vj1 , . . . , vjs) are L-formulas, with {i1, . . . , ir, j1, . . . , js} = {1, . . . , n},
then

M |= (ϕ ∧ ψ)(ā) ⇔ M |= ϕ(ai1 , . . . , air) and M |= ψ(aj1 , . . . , ajs),

(v) If ϕ(v1, . . . , vn, w) is an L-formula then

M |= (∀wϕ)(ā) ⇔ M |= ϕ(ā, b) for every b ∈M .

Remark 3.2.

1. We will use the following abbreviations for the expression of other “logical notions”.

(i) disjunction: ϕ ∨ ψ (“ϕ or ψ”) is an abbreviation for ¬(¬ϕ ∧ ¬ψ).

(ii) implication: ϕ→ ψ (“ϕ implies ψ”) is an abbreviation for ¬ϕ ∨ ψ.

(iii) equivalence: ϕ↔ ψ (“ϕ if and only if ψ”) is an abbreviation for (ϕ→ ψ) ∧ (ψ → ϕ).

(iv) existential quantification: ∃v(ϕ) (“there exists v, ϕ”) is an abbreviation for ¬∀v(¬ϕ).

2. Depending on the particular language L, one can define further abbreviations. For example,
consider the language Lor. We often drop the multiplication symbol, and write v1v2 for v1 ·v2.
We can express the squaring function as the Lor-term v · v, which will be abbreviated as v2.
For example, the following formula expresses that every positive element has a square root:

∀x(x > 0→ ∃y(x = y2)).

For another example, we can express the ternary relation |x− y| < z as

(0 ≤ x− y < z) ∨ (0 ≤ y − x < z),

where v1 ≤ v2 < v3 is an abbreviation for: ((v1 = v2) ∨ (v1 < v2)) ∧ (v2 < v3).

5



Note that if we have an L-formula ϕ(v1, . . . , vn) and an L-structure M, it only makes sense
to ask whether ϕ is satisfied in M after plugging in elements from the universe of M for the free
variables. On the other hand, if a formula has no free variables, then we can think of it as expressing
some property that is either true or false in a structure.

Definition 3.3. An L-sentence is an L-formula with no free variables.

Definition 3.1 does not technically apply directly to sentences since we started with a formula
with free variables. However, you should have an intuitive idea for what it should mean for an
L-structure to satisfy an L-sentence. Moreover, you should be able to write out a formal definition.
On the other hand, we can also “cheat”, and say that an L-structureM satisfies an L-sentence ϕ
if, for some/any a ∈M , a satisfies the formula ϕ ∧ (v1 = v1) in M as in Definition 3.1.

Definition 3.4. If M is an L-structure and ϕ is an L-sentence, then we write M |= ϕ to mean
that M satisfies ϕ.

In the previous situation, we may also say “M models ϕ”, or “ϕ is true in M”.

Definition 3.5. Let Σ be a set of L-sentences.

1. Σ is satisfiable if there is an L-structure M such that M |= ϕ for all ϕ ∈ Σ (we also write
M |= Σ in this case).

2. Σ is finitely satisfiable if every finite subset of Σ is satisfiable.

Note that if a set of L-sentences is finitely satisfiable, then its finite subsets may very well
be satisfied by different L-structures. So there is no obvious reason why a finitely satisfiable set
of sentences should be satisfiable. However, this is in fact the case, thanks to the Compactness
Theorem, which is the foundation of first-order model theory.

Theorem 3.6 (Compactness). Let Σ be a set of L-sentences. Then Σ is satisfiable if and only if
it is finitely satisfiable.

6


