This note clarifies the definition of a reduct of theory, which came up in Corollary 15.4.

Definition. Given an an \mathcal{L} -theory T and a sub-language $\mathcal{L}_0 \subseteq \mathcal{L}$, the reduct of T to \mathcal{L} is the set of \mathcal{L}_0 -sentences φ such that $T \models \varphi$.

Important Note. While stating Corollary 15.4, I first wrote $\varphi \in T$, and then added $T \models \varphi$ as an "alternate option". This makes no difference when the theory in question is closed under logical consequences (e.g. Th(\mathcal{M}) for some \mathcal{M}) and, in practice, it is common to identify a theory with its set of logical consequences. But, in general, the right definition is the one above. Here is an example showing the subtlety.

Example. Let \mathcal{L} contain infinitely many distinct constant symbols c_n for all $n \geq 0$. Define $T = \{c_m \neq c_n : m \neq n\}$. Then T is a complete \mathcal{L} -theory, and we can think of T as "the theory of infinite sets with labels for a countable subset". Now let $\mathcal{L}_0 = \emptyset$. Then the reduct of T to \mathcal{L}_0 is the theory of infinite sets, since T proves the sentence "there are at least n elements" for all $n \geq 1$. But note that T doesn't literally contain any of these sentences.

An important (but easy) fact is that the reduct of a complete \mathcal{L} -theory T to a sublanguage \mathcal{L}_0 is always a complete \mathcal{L}_0 -theory.

Finally, recall that the notion of a reduct of a *structure* is much more concrete. Given an \mathcal{L} -structure \mathcal{M} , and some $\mathcal{L}_0 \subseteq \mathcal{L}$, the reduct of \mathcal{M} to \mathcal{L}_0 is the \mathcal{L}_0 -structure obtained by forgetting the interpretations for anything not in \mathcal{L}_0 . So one could rephrase Corollary 15.4 as follows.

Corollary. Assume \mathcal{L} is countable, and suppose \mathcal{M} is an \mathcal{L} -structure such that $\operatorname{Th}(\mathcal{M})$ is \aleph_0 -categorical. Let \mathcal{M}_0 be the reduct of \mathcal{M} to some $\mathcal{L}_0 \subseteq \mathcal{L}$. Then $\operatorname{Th}(\mathcal{M}_0)$ is \aleph_0 -categorical.

This is how we applied the corollary in the proof of Vaught's theorem on $I(T,\aleph_0) \neq 2$. (And this will be our only use of the corollary.)