
Part III - Model Theory
The Witness Property and Henkin Constructions

These notes discuss the fact stated during the proof of the Omitting Types Theorem.
Recall that we started with a countable language L, and defined L∗ = L ∪ C, where C is a
countably infinite set of new constant symbols. However, the restriction on the cardinality
of L and C was only important for later parts of the proof of omitting types (in particular,
enumerating all L∗-sentences). In the present context, we don’t need to assume L or C is
countable. Thus, to simplify things, we can just start with an arbitrary language L and
assume L already has enough constants for witnesses. So we will actually consider the
following slightly stronger version of the fact stated during lecture.

Fact 1. Let T be a complete satisfiable L-theory with the witness property, i.e., for any
L-formula ϕ(x) there is a constant symbol c in L such that T |= ∃xϕ(x) → ϕ(c). Then the
“Henkin model” is a model of T .

Proof. Let’s first recall what is meant by the Henkin model. Let C be the set of constant
symbols in L. Define an equivalence relation ∼ on C such that c ∼ d if and only if T |= c = d.
Let M be the set C/∼ of equivalence classes (which we denote by [c] for c ∈ C). We define
an L-structure M with universe M as follows:

(i) Given a constant symbol c ∈ C, let cM = [c].

(ii) Given an n-ary function symbol f and c1, . . . , cn, d ∈ C, we let fM([c1], . . . , [cn]) = [d]
if and only if T |= f(c1, . . . , cn) = d.

(iii) Given an n-ary relation symbolR, letRM = {([c1], . . . , [cn]) ∈Mn : T |= R(c1, . . . , cn)}.

We need to check thatM is well-defined. There is no issue in (i), but we need to analyze
(ii) and (iii).

Suppose f is an n-ary function symbol. We need to show that fM is a well-defined
function. So fix elements a1, . . . , an ∈ M . We may choose constant symbols c1, . . . , cn ∈ C
such that ai = [ci]. Now let ϕ(x) be the L-formula x = f(c1, . . . , cn). By the witness property,
there is a constant symbol d ∈ C such that T |= ∃xφ(x)→ φ(d). Since T |= ∃xφ(x) (in any
model of T the interpretation of f(c1, . . . , cn) exists), we have T |= φ(d). Therefore we at
least have some d such that T |= f(c1, . . . , cn) = d, and so our definition of fM does assign
a value [d] to fM(a1, . . . , an). But we need to make sure that this value doesn’t depend on
the choice of representatives c1, . . . , cn. So suppose c′1, . . . , c

′
i, d
′ are constant symbols such

that c′i ∼ ci and T |= f(c′1, . . . , c
′
n) = d′. We need to show that d ∼ d′. But this is clear from

the definition of ∼. Indeed, T |= c′i = ci for all i, and so T |= f(c1, . . . , cn) = f(c′1, . . . , c
′
n),

and thus T |= d = d′.
Finally, suppose R is an n-ary relation symbol. We need to show that the definition of

RM does not depend on the choice of ∼-representative. But this is again immediate from the
definition of ∼. In particular, if c1, . . . , cn, c

′
1, . . . , c

′
n are constant symbols, and T |= ci = c′i

for all i, then T |= R(c1, . . . , cn)↔ R(c′1, . . . , c
′
n).



Now that we knowM is well-defined, we can prove thatM is a model of T . In particular,
we show by induction on formulas that, for any L-formula ϕ(x1, . . . , xn) and any constant
symbols c1, . . . , cn ∈ C,

M |= ϕ([c1], . . . , [cn]) ⇔ T |= ϕ(c1, . . . , cn). (∗)

As usual, this requires a lemma on terms. In particular, for any L-term t(x1, . . . , xn) and
constant symbols c1, . . . , cn, d ∈ C, we claim that tM([c1], . . . , [cn]) = [d] if and only if
T |= t(c1, . . . , cn) = d. This can be proved by induction on terms. If t is a constant symbol
c, then the claim is [c] = [d] if and only if T |= c = d, which is by definition of ∼. If t is a
variable then, in light of how M is defined, the claim reduces to what we just observed for
constant symbols. Finally, for the inductive step, assume the result for terms tm, . . . , tm, say
each of arity n, and fix an m-ary function symbol f . Fix c1, . . . , cn, d and let di be a constant
symbol such that tMi ([c1], . . . , [cn]) = [di]. Let t be the new term f(t1, . . . , tm). Then

tM([c1], . . . , [cn]) = [d] ⇔ fM([d1], . . . [dm]) = [d] ⇔
T |= f(d1, . . . , dn) = d ⇔ T |= t(c1, . . . , cn) = d,

where the first equivalence uses the definition of t, the second uses the definition of fM, and
the third uses the induction hypothesis (which tells us T ∗ |= ti(c1, . . . , dn) = di for all i).

Now we can return to proving the main claim (∗) by induction on ϕ. Suppose ϕ is atomic,
i.e., of the form R(t1, . . . , tm) for some m-ary relation symbol R and terms t1, . . . , tm, each
of arity n. Fix constant symbols c1, . . . , cn, and let d1, . . . , dm be constant symbols such that
tMi ([c1], . . . , [cn]) = [di]. So T |= ti(c1, . . . , cn) = di by the lemma for terms. Therefore

M |= ϕ([c1], . . . , [cn]) ⇔ ([d1], . . . , [dm]) ∈ RM

⇔ T |= R(d1, . . . , dm) ⇔ T |= ϕ(c1, . . . , cn).

The previous argument works the same way if R is equality.
Next we do the induction steps. The step for conjunctions is trivial, and boils down to

the fact that, for any sentences φ and ψ, we have T |= ϕ∧ψ if and only if T |= ϕ and T |= ψ.
Similarly, the negation step boils down to the fact that T |= ¬φ if and only if T 6|= φ. But
we need to justify why this is the case. On one hand, if T 6|= φ, then T |= ¬φ since T is
complete. On the other hand, if T |= ¬φ then T 6|= φ since T is satisfiable.

So all we have left is the quantifier step, and we’ll work with existential quantifiers.
Assume (∗) holds for ϕ(x1, . . . , xn, y) and consider ∃yϕ(x̄, y). Fix constant symbols c1, . . . , cn.

First assumeM |= ∃yϕ([c1], . . . , [cn], y). So there is a constant symbol d such thatM |=
ϕ([c1], . . . , [cn], [d]). By induction, T |= ϕ(c1, . . . , cn, d), which implies T |= ∃yϕ(c1, . . . , cn, d).

Finally, assume T |= ∃yϕ(c1, . . . , cn, d). By the witness property, there is a constant
symbol d such that T |= ϕ(c1, . . . , cn, d). By induction M |= ϕ([c1], . . . , [cn], [d]), and so
M |= ∃yϕ([c1], . . . , [cn]).



Direct proof of Compactness

One can prove the Compactness Theorem directly (i.e., without going through the proof
system), using the same ideas as above. Call an L-theory T maximal if for any L-sentence
ϕ, either ϕ ∈ T or ¬ϕ ∈ T . So, in particular, maximality is a strong form of completeness.
We also say that an L-theory T has the strong witness property if for any L-formula
φ(x) there is a constant symbol c in L such that the sentence ∃xφ(x)→ φ(c) is in T .

Lemma 2. Suppose T is a finitely satisfiable L-theory. Then there is an expansion L∗ of
L by constants, and an L∗-theory T ∗ such that T ∗ is maximal, finitely satisfiable, has the
strong witness property, and contains T .

Proof. We first build L∗ and a finitely satisfiable L∗-theory T ′ ⊇ T with the strong witness
property. This is very much like the proof of #9 on Examples Sheet 1. In particular, start
with L0 = L and T0 = T . Given Ln and a finitely satisfiable Ln-theory Tn ⊇ T , let Ln+1 be
obtained from Ln by adding a new constant symbol cϕ for every Ln-formula ϕ(x) in one free
variable. Then let Tn+1 be obtained from T by adding the sentence ∃xϕ(x)→ ϕ(cϕ) for every
Ln-formula ϕ(x). Let Hn denote this new set of sentences added to Tn (so Tn+1 = Tn ∪Hn).
We need to check that Tn+1 is still finitely satisfiable. Note that any finite subset of Tn+1 is
contained in ∆ ∪Hn for some finite subset ∆ ⊆ Tn. So it suffices to fix a finite set ∆ ⊆ Tn,
and show that ∆ ∪Hn is satisfiable. Since Tn is finitely satisfiable, there is an Ln-structure
M |= ∆. Expand M to an Ln+1 structure by interpreting each cϕ as a solution to ϕ(x), if
one exists in M. Then M |= ∆ ∪Hn.

Now let L∗ =
⋃

n≥0 Ln and T ′ =
⋃

n≥0 Tn. Then T ′ is finitely satisfiable (since any finite
subset is contained in Tn for some n), has the strong witness property (since any L∗-formula
is a Ln-formula for some n), and contains T . All we are missing is maximality and, for this,
we need Zorn’s Lemma.

Consider the set X of all L∗-theories that are finitely satisfiable, have the strong witness
property, and contain T . So we have just shown that X is nonempty. Consider X as a
partial order under the subset relation. Let C ⊆ X be a chain with respect to this partial
order, and let TC be the union of all elements (theories) in the chain. We claim that TC ∈ X.
It is clear that TC contains T and has the strong witness property. Moreover, TC is finitely
satisfiable since C is a chain, and so any finite subset of TC is contained in some theory in C.

So we can apply Zorn’s Lemma to X and obtain a theory T ∗ that is order-maximal in X.
We claim that this corresponds to maximality the way we defined it for theories above. So
fix an L∗-sentence ϕ and suppose, for a contradiction, that ϕ,¬ϕ 6∈ T ∗. Let T1 = T ∗ ∪ {ϕ}
and T2 = T ∗ ∪ {¬ϕ}. Both of these theories properly extend T ∗, and so neither can be in X
since T ∗ is order-maximal in X. Since both theories have the strong witness property and
contain T , it must then be the case that neither is finitely satisfiable. So there are finite
sets ∆1,∆2 ⊆ T ∗ such that both ∆1 ∪ {ϕ} and ∆2 ∪ {¬ϕ} are unsatisfiable. It follows that
∆ := ∆1 ∪ ∆2 is unsatisfiable, since any model of ∆ would have to satisfy either ϕ or ¬ϕ.
Since ∆ is a finite subset of T ∗, this contradicts finitely satisfiability of T ∗.

Theorem 3 (Compactness). Any finitely satisfiable theory is satisfiable.

Proof. Let T be a finitely satisfiable theory. By Lemma 2, we may assume without loss of
generality that T is maximal and has the strong witness property. The idea now is to use a



variation of Fact 1 to build a model of T . Note that the only assumption from Fact 1 we are
missing is satisfiability, which is of course what we are trying to prove. So we re-formulate
Fact 1 as follows.

Fact 1∗. Let T be a maximal finitely satisfiable L-theory with the strong witness property,
and let C be the set of constant symbols in L. Define ∼ on C such that c ∼ d if and only if
c = d is in T . Define an L-structure M on M = C/∼ exactly as in the proof of Fact 1, but
replace all occurrences of “T |= ϕ” with “ϕ ∈ T”. Then M is a model of T . In particular,
for any L-formula φ(x1, . . . , xn) and constant symbols c1, . . . , cn in L, we have

M |= φ([c1], . . . , [cn]) ⇔ φ(c1, . . . , cn) ∈ T. (∗∗)

The proof of this variation is nearly identical. The main subtlety is that all of the uses of
satisfiability in the proof of Fact 1 only relied on a finite amount of information. By working
with a maximal theory, and replacing the notion “T |= ϕ” with “ϕ ∈ T”, we are able to
recover everything with finite satisfiability of T . Let me just illustrate two examples of this,
which hopefully will convince you that the same proof idea works (and you can check the
details if you are really motivated).

For one example, let’s see why the interpretation of function symbols is still well-defined.
Let f be an n-ary function symbol, and fix c1, . . . , cn, d, c

′
1, . . . , c

′
n, d

′ ∈ C such that ci ∼ c′i
for all 1 ≤ i ≤ n, and T contains the sentences f(c1, . . . , cn) = d and f(c′1, . . . , c

′
n) = d′.

Then we need to show d ∼ d′ in order for our choice of fM([c1], . . . , [cn]) to be uniquely
defined. So toward a contradiction, suppose d′ 6∼ d, i.e., d = d′ is not in T . By maximality,
d 6= d′ is in T . But now we have the following finite subset of T :

{c1 = c′1, . . . , cn = c′n, f(c1, . . . , cn) = d, f(c′1, . . . , c
′
n) = d′, d 6= d′}.

This set is not satisfiable, contradicting finite satisfiability of T .
For another example, let’s verify the negation step in the induction argument for (∗∗).

Similar to the proof of Fact 1, and in light of how (∗∗) has been modified compared to (∗),
this boils down to showing that for any L-sentence ϕ, we have ¬ϕ ∈ T if and only if ϕ 6∈ T .
For one direction, if ϕ 6∈ T then ¬ϕ ∈ T by maximality. For the other direction, if ¬ϕ ∈ T
then ϕ 6∈ T since otherwise {ϕ,¬ϕ} would contradict finite satisfiability of T .

The rest of the modifications to the proof go very much the same way, and in the end we
build a model M of T , which is what we needed to do.

Finally, let’s point out how the previous proof gives us the Downward Löwenheim-Skolem
Theorem (as stated in Lecture 2).

Corollary 4 (DLST). If T is a finitely satisfiable L-theory, then T has a model of size at
most |L|+ ℵ0.

Proof. Note that in the previous proof of compactness, we have |M | ≤ |C| ≤ |L|. However,
in the second line of the proof, we used Lemma 2 and replaced L by a bigger language.
So what we really need to check is that in Lemma 2, we have |L∗| ≤ |L| + ℵ0. This is a
straightforward cardinality exercise, very much like the ones we’ve done before. The key
point is that for any language L, the number of L-formulas is |L|+ ℵ0.


