3.2. Other norms for matrices.

3.2.1. The Frobenius norm (the Hilbert-Schmidt norm). This is defined as

$$
\|M\|_{F}=\sqrt{\operatorname{Tr}\left(M^{*} M\right)}=\sqrt{\sum_{k=1}^{r} \sigma_{k}^{2}}
$$

It is the same as the Euclidian norm when M is viewed as a vector with $m n$ components:

$$
\|M\|_{F}=\sqrt{\sum_{i, j}\left|M_{i j}\right|^{2}}
$$

(see also (13)).
The Frobenius norm is easier to calculate than the operator norm, and it is invariant under unitary transformations (i.e. under changes of orthonormal bases), since $\|M\|_{F}=\left\|U M V^{*}\right\|_{F}$ if U, V are unitary (because the matrices M and $U M V^{*}$ have the same singular values).

The Frobenius norm is compatible to matrix multiplication, as relation (12) can be checked by direct calculation:

$$
\|M N\|_{F}^{2}=\sum_{i j}\left|(M N)_{i j}\right|^{2}=\sum_{i j}\left|\sum_{k} M_{i k} N_{k j}\right|^{2}
$$

and, using the Cauchy-Schwartz inequality,

$$
\leq \sum_{i j}\left(\sum_{k}\left|M_{i k}\right|^{2}\right)\left(\sum_{l}\left|N_{l j}\right|^{2}\right)=\|M\|_{F}^{2}\|N\|_{F}^{2}
$$

Lower rank approximations. Suppose that M is an $m \times n$ matrix of rank r, with singular values $\sigma_{1} \geq \sigma_{2} \geq \ldots \geq \sigma_{r}$ and singular value decomposition $M=U \Sigma V^{*}$. Then among all $m \times n$ matrices of lower rank $k \leq r$ the best approximation is $X_{k}=U \Sigma_{k} V^{*}$ where Σ_{k} is the diagonal matrix with singular values $\sigma_{1}, \sigma_{2}, \ldots, \sigma_{k}$, in the sense that

$$
\left\|M-X_{k}\right\|_{F}=\min \left\{\|M-X\|_{F} ; X \in \mathcal{M}_{m, n}, \operatorname{rank} X=k\right\}
$$

(this theorem is due to Eckart and Young, 1936).
Proof. Since $\|M-X\|_{F}=\left\|U \Sigma V^{*}-X\right\|_{F}=\left\|\Sigma-U^{*} X V\right\|_{F}$ Denoting $N=U^{*} X V$, an $m \times n$ matrix of rank k, a direct calculation gives

$$
\|\Sigma-N\|_{F}^{2}=\sum_{i, j}\left|\Sigma_{i, j}-N_{i, j}\right|^{2}=\sum_{i=1}^{r}\left|\sigma_{i}-N_{i i}\right|^{2}+\sum_{i>r}\left|N_{i i}\right|^{2}+\sum_{i \neq j}\left|N_{i, j}\right|^{2}
$$

which is minimal when all the non diagonal terms of N equal to zero, and so are all $N_{i i}$ for $i>r$. Finally, the minimum of $\sum_{i=1}^{r}\left|\sigma_{i}-N_{i i}\right|^{2}$ among all $N_{11}, \ldots, N_{r r}$ of which exactly k are nonzero is attained when $N_{i i}=\sigma_{i}$ for $i=1, \ldots, k$ and all other $N_{i i}$ are zero.

It is worth noting that the "complexity" of X_{k} can be further reduced as we can use lower dimensional matrices for its calculation, since $X_{k}=$
$U_{k} D_{k} V_{k}^{*}$ where is the $k \times k$ diagonal matrix with singular values $\sigma_{1}, \sigma_{2}, \ldots, \sigma_{k}$, and U_{k} and V_{k} are the first k columns of the matrices U, respectively V.

Indeed, splitting in blocks $U=\left[U_{k}, U^{\prime}\right]$ and $V=\left[V_{k}, V^{\prime}\right]$ we calculate

$$
X_{k}=U \Sigma_{k} V^{*}=\left[U_{k}, U^{\prime}\right]\left[\begin{array}{cc}
D_{k} & 0 \\
0 & 0
\end{array}\right]\left[\begin{array}{c}
V_{k}^{*} \\
V^{\prime *}
\end{array}\right]=\left[U_{k}, U^{\prime}\right]\left[\begin{array}{c}
D_{k} V_{k}^{*} \\
0
\end{array}\right]=U_{k} D_{k} V_{k}^{*}
$$

