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3.2. Other norms for matrices.

3.2.1. The Frobenius norm (the Hilbert-Schmidt norm). This is defined as
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It is the same as the Euclidian norm when M is viewed as a vector with mn

components:
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(see also (13)).
The Frobenius norm is easier to calculate than the operator norm, and it is

invariant under unitary transformations (i.e. under changes of orthonormal
bases), since kMk
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= kUMV

⇤
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if U, V are unitary (because the matrices
M and UMV

⇤ have the same singular values).
The Frobenius norm is compatible to matrix multiplication, as relation

(12) can be checked by direct calculation:
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and, using the Cauchy-Schwartz inequality,
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Lower rank approximations. Suppose that M is an m⇥ n matrix of rank
r, with singular values �1 � �2 � . . . � �

r

and singular value decomposition
M = U⌃V ⇤. Then among all m ⇥ n matrices of lower rank k  r the
best approximation is X

k

= U⌃
k

V

⇤ where ⌃
k

is the diagonal matrix with
singular values �1,�2, . . . ,�

k

, in the sense that
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(this theorem is due to Eckart and Young, 1936).
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Denoting
N = U

⇤
XV , an m⇥ n matrix of rank k, a direct calculation gives

k⌃�Nk

2
F

=
X

i,j

|⌃
i,j

�N

i,j

|

2 =
rX

i=1

|�

i

�N

ii

|

2 +
X

i>r

|N

ii

|

2 +
X

i 6=j

|N

i,j

|

2

which is minimal when all the non diagonal terms of N equal to zero, and
so are all N
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for i > r. Finally, the minimum of
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of which exactly k are nonzero is attained when N
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are zero. 2
It is worth noting that the ”complexity” of X

k

can be further reduced
as we can use lower dimensional matrices for its calculation, since X

k

=
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where is the k⇥k diagonal matrix with singular values �1,�2, . . . ,�
k

,
and U
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and V
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are the first k columns of the matrices U , respectively V .
Indeed, splitting in blocks U = [U
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