and
\[
\sum_{j=1}^{n} \lambda_j |y_j|^2 \geq \lambda_1 \sum_{j=1}^{n} |y_j|^2 = \lambda_1 \|y\|^2
\]
therefore
\[
\lambda_1 \leq R(x) \leq \lambda_n \quad \text{for all } x \neq 0
\]

Equalities are attained since \(R(U(e_1)) = 1 \) and \(R(U(e_n)) = n \). Going to coordinates \(x \) minimum is attained for \(x = Ue_1 = u_1 = \text{eigenvector corresponding to } \lambda_1 \) since \(R(u_1) = R(U(e_1)) = \lambda_1 \), and for \(x = Ue_n = u_n = \text{eigenvector corresponding to } \lambda_n \), maximum is attained since \(R(u_n) = R(U(e_n)) = \lambda_n \). This proves:

Theorem 39. If \(A \) is a self-adjoint matrix then
\[
\max \frac{\langle x, Ax \rangle}{\|x\|^2} = \lambda_n \text{ the max eigenvalue of } A, \text{ attained for } x = u_n
\]
and
\[
\min \frac{\langle x, Ax \rangle}{\|x\|^2} = \lambda_1 \text{ the min eigenvalue of } A, \text{ attained for } x = u_1
\]

As an important consequence in numerical calculations: the maximum eigenvalue of \(A \) can be found by solving a maximization problem, and the minimum eigenvalue - by a minimization problem.

4.3. The minimax principle.
Reducing the dimension of \(A \) we can find all the eigenvalues, one by one. Consider the eigenvalues (24) of \(A \) and the corresponding eigenvectors \(u_1, \ldots, u_n \) which form an orthonormal basis:
\[
F^n = \bigoplus_{j=1}^{n} Fu_j.
\]

We saw that \(\max R(x) = \lambda_n = R(u_n) \). The subspace \(Sp(u_n) \) and its orthogonal complement \(Sp(u_n)^\perp = \bigoplus_{j=1}^{n-1} Sp(u_j) \) are invariant under \(A \).

Consider \(A \) as a linear transformation of the \(n-1 \) dimensional vector space \(Sp(u_n)^\perp \) to itself: its eigenvalues are \(\lambda_1, \ldots, \lambda_{n-1} \), the largest being \(\lambda_{n-1} \). We reduced the dimension!

Using Theorem 39 for \(A \) as a linear transformation on the vector space \(Sp(u_n)^\perp \) it follows that
\[
(25) \quad \max_{x \in Sp(u_n)^\perp} R(x) = \lambda_{n-1} \text{ is attained for } x = u_{n-1}
\]
The statement \(x \in Sp(u_n)^\perp \) can be formulated as the constraint \(\langle x, u_n \rangle = 0 \):
\[
\max_{x: \langle x, u_n \rangle = 0} R(x) = \lambda_{n-1}
\]

We can do even better: we can obtain \(\lambda_{n-1} \) \emph{without knowing} \(u_n \) or \(\lambda_n \).

To achieve this, subject \(x \) to \emph{any} constraint: \(\langle x, z \rangle = 0 \) for some \(z \neq 0 \).

It is easier to see what happens in coordinates \(y = U^*x \) in which \(A \) is diagonal. The constraint \(\langle x, z \rangle = 0 \) is equivalent to \(\langle y, w \rangle = 0 \) where \(w = Uz \) is some nonzero vector.
Step I. We have

$$\max_{y : \langle y, w \rangle = 0} R_U(y) \geq \lambda_{n-1} \quad \text{for all } w \neq 0$$

since there is some nonzero vector y belonging to both the $n - 1$ dimensional subspace $\{y : \langle y, w \rangle = 0\}$ and the two dimensional subspace $F e_{n-1} \oplus F e_n$. (Such a vector is easy to find: $y = (0, \ldots, 0, y_{n-1}, y_n)^T$ with $\langle y, w \rangle = 0$; if $w_n \neq 0$ take $y_{n-1} = 1$ and $y_n = -w_{n-1}/w_n$, and if $w_n = 0$ take $y_{n-1} = 0, y_n = 1$). Using formula (23)

$$R_U(y) = \frac{\lambda_{n-1} |y_{n-1}|^2 + \lambda_n |y_n|^2}{|y_{n-1}|^2 + |y_n|^2} \geq \frac{\lambda_{n-1} |y_{n-1}|^2 + \lambda_{n-1} |y_n|^2}{|y_{n-1}|^2 + |y_n|^2} = \lambda_{n-1}$$

proving (26).

Step II. Inequality (26) implies that

$$\min_{w \neq 0} \max_{y : \langle y, w \rangle = 0} R_U(y) \geq \lambda_{n-1}$$

Step III. We now show that equality is attained in (28) for special w.

For $w = e_n$ we have, by (25),

$$\max_{y : \langle y, e_n \rangle = 0} R_U(y) = \lambda_{n-1} \quad \text{attained for } y = e_n$$

hence in (28) there is equality

$$\min_{w \neq 0} \max_{y : \langle y, w \rangle = 0} R_U(y) = \lambda_{n-1}$$

In a similar way it is shown that λ_{n-2} is obtained by a minimum-maximum process, but with two constraints:

$$\min_{w_1, w_2 \neq 0} \max_{\langle y, w_1 \rangle = 0, \langle y, w_2 \rangle = 0} R_U(y) = \lambda_{n-2}$$

Indeed, consider a nonzero vector $\tilde{y} = (0, \ldots, 0, y_{n-2}, y_{n-1}, y_n)^T$ satisfying $\langle \tilde{y}, w_1 \rangle = 0$ and $\langle \tilde{y}, w_2 \rangle = 0$. Then in formula (23)

$$R_U(\tilde{y}) = \frac{\lambda_{n-2} |y_{n-2}|^2 + \lambda_{n-1} |y_{n-1}|^2 + \lambda_n |y_n|^2}{|y_{n-2}|^2 + |y_{n-1}|^2 + |y_n|^2} \geq \frac{\lambda_{n-2} |y_{n-2}|^2 + \lambda_{n-2} |y_{n-1}|^2 + \lambda_{n-2} |y_n|^2}{|y_{n-2}|^2 + |y_{n-1}|^2 + |y_n|^2} = \lambda_{n-2}$$

which shows that

$$\max_{\langle y, w_1 \rangle = 0, \langle y, w_2 \rangle = 0} R_U(y) \geq \lambda_{n-2}$$

Since for $w_1 = e_n$ and $w_2 = e_{n-1}$ we have equality in (30), and this implies (29).
Step by step, adding one extra constraint, the minimax procedure yields the next largest eigenvalue.

Going back to the variable x it is found that:

Theorem 40. The minimax principle

Let A be a self-adjoint matrix, with its eigenvalues numbered in an increasing sequence:

$$\lambda_1 \leq \lambda_2 \leq \ldots \leq \lambda_n$$

corresponding to the eigenvectors v_1, \ldots, v_n.

Then its Rayleigh’s quotient

$$R(x) = \frac{\langle x, Ax \rangle}{\|x\|^2}$$

satisfies

$$\max_{x \neq 0} R(x) = \lambda_n$$

$$\min_{x \neq 0} \max_{\langle x, z \rangle = 0} R(x) = \lambda_{n-1}$$

$$\min_{z_1, z_2 \neq 0} \max_{\langle x, z_1 \rangle = 0, \langle x, z_2 \rangle = 0} R(x) = \lambda_{n-2}$$

and in general

$$\min_{z_1, \ldots, z_k \neq 0} \max_{\langle x, z_1 \rangle = 0, \ldots, \langle x, z_k \rangle = 0} R(x) = \lambda_{n-k}, \quad k = 1, 2, \ldots, n - 1$$

Remark. Sometimes the minimax principle is formulated as

$$\min_{V_j} \max_{x \in V_j} R(x) = \lambda_j, \quad j = 1, \ldots, n$$

where V_j denotes an arbitrary subspace of dimension j.

The two formulations are equivalent since the set

$$V_{n-k} = \{x \mid \langle x, z_1 \rangle = 0, \ldots, \langle x, z_k \rangle = 0\}$$

is a vector space of dimension $n - k$ if z_1, \ldots, z_k are linearly independent.

A similar construction starting with the lowest eigenvalue produces:

Theorem 41. The maximin principle

Under the assumptions of Theorem 40

$$\min_{x \neq 0} R(x) = \lambda_1$$

$$\max_{z \neq 0} \min_{\langle x, z \rangle = 0} R(x) = \lambda_2$$
and in general

$$\max_{\mathbf{z}_1, \ldots, \mathbf{z}_k \neq \mathbf{0}} \min_{\langle \mathbf{x}, \mathbf{z}_1 \rangle = 0} R(\mathbf{x}) = \lambda_{k+1}, \quad k = 1, 2, \ldots, n - 1$$

$$\cdots$$

$$\langle \mathbf{x}, \mathbf{z}_k \rangle = 0$$

4.4. The minimax principle for the generalized eigenvalue problem. Suppose $\lambda_1 \leq \lambda_1 \leq \ldots \leq \lambda_n$ are eigenvalues for the problem

$$A \mathbf{v} = \lambda B \mathbf{v}, \quad A \text{ symmetric, } B \text{ positive definite}$$

(31)

It was seen in §3.8 that if $S = [\mathbf{v}_1, \ldots, \mathbf{v}_n]$ is the matrix whose columns are the generalized eigenvectors of the problem (31), then both matrices A and B are diagonalized using a congruence transformation: $S^T AS = \Lambda$ and $S^T BS = I$.

Defining

$$R(\mathbf{x}) = \frac{\langle \mathbf{x}, A\mathbf{x} \rangle}{\langle \mathbf{x}, B\mathbf{x} \rangle}$$

it is found that in coordinates $\mathbf{x} = S\mathbf{y}$:

$$R(\mathbf{x}) = R(S\mathbf{y}) = \frac{\langle S\mathbf{y}, A S \mathbf{y} \rangle}{\langle S\mathbf{y}, B S \mathbf{y} \rangle} = \frac{\langle \mathbf{y}, S^T A S \mathbf{y} \rangle}{\langle \mathbf{y}, S^T B S \mathbf{y} \rangle} = \frac{\lambda_1 y_1^2 + \ldots + \lambda_n y_n^2}{y_1^2 + \ldots + y_n^2}$$

and therefore

$$\max R(\mathbf{x}) = \lambda_n, \quad \min R(\mathbf{x}) = \lambda_1$$
5. Singular Value Decomposition

5.1. Rectangular matrices.

For rectangular matrices M the notions of eigenvalue/vector cannot be defined. However, the products MM^* and/or M^*M (which are square, even self-adjoint, and even positive semi-definite matrices) carry a lot of information about M. The first result is that they have the same nonzero eigenvalues:

Proposition 42. Let M be an $m \times n$ matrix. The matrices MM^* and M^*M are positive semi-definite. Moreover, they have the same nonzero eigenvalues (with the same multiplicity).

Moreover, let $\lambda_1, \ldots, \lambda_r$ be the positive eigenvalues. If $M^*Mv_j = \lambda_j v_j$ with $\lambda_j > 0$ and v_1, \ldots, v_r an orthonormal set, then $MM^*u_j = \lambda_j v_j$ for $u_j = \frac{1}{\sqrt{\lambda_j}}Mv_j$ and u_1, \ldots, u_r is an orthonormal set.

Proof. The two matrices obviously self-adjoint and are positive semi-definite since $\langle x, M^*Mx \rangle = \langle Mx, Mx \rangle \geq 0$ and $\langle x, MM^*x \rangle = \langle M^*x, M^*x \rangle \geq 0$.

Let v_1, \ldots, v_n be an orthonormal set of eigenvectors of M^*M, the first r corresponding to nonzero eigenvalues: $M^*Mv_j = \lambda_j v_j$ with $\lambda_j > 0$, for $j = 1, \ldots, r$ and $M^*Mv_j = 0$ for $j > r$.

Applying M we discover that $MM^*Mv_j = \lambda_j Mv_j$ with $\lambda_j > 0$, for $j = 1, \ldots, r$ and $MM^*Mv_j = 0$ for $j > r$ which would mean that Mv_j are eigenvectors to MM^* corresponding to the eigenvalue λ_j provided we ensure that $Mv_j \neq 0$. This is certainly true for all $j = 1, \ldots, r$, since $\|Mv_j\|^2 = \langle Mv_j, Mv_j \rangle = \langle v_j, M^*Mv_j \rangle = \langle v_j, \lambda_j v_j \rangle = \lambda_j \neq 0$ for $j \leq r$.

On the other hand, note that all Mv_1, \ldots, Mv_r are mutually orthogonal, since $\langle Mv_j, Mv_i \rangle = \langle v_j, M^*Mv_i \rangle = \lambda_i \delta_{ij}$ so $Mv_j \perp Mv_i$ for all $i \neq j \leq r$, and $\|Mv_j\|^2 = \lambda_j$. Therefore, all the nonzero eigenvalues of M^*M are also eigenvalues for MM^*, and with the same multiplicity, and with corresponding unit eigenvectors $u_j = \frac{1}{\sqrt{\lambda_j}}Mv_j$, $j = 1, \ldots, r$.

The same argument can be applied replacing M by M^*, showing that indeed, MM^* and M^*M have the same nonzero eigenvalues and with the same multiplicity. \Box

Another result is that the Euclidian norm of M can be read from the maximal eigenvalue of MM^* (or M^*M):

$$\sum_{i,j} |M_{ij}|^2 = \text{the max eigenvalue of } M^*M$$

(We will discuss more later.)

5.2. The SVD theorem. Let M be an $m \times n$ matrix. We are going to bring it as close to a diagonal form as humanly possible. Namely, we are going to write it as $M = U\Sigma V^*$ where Σ is a diagonal $m \times n$ matrix, and U