Recall: \(\{e^{inx}\}_{n \in \mathbb{Z}} \) form an orthogonal basis

in \(L^2(-\pi, \pi) \). That is, any \(f \in L^2(-\pi, \pi) \) can be uniquely represented as a Fourier series

\[
f \sim \sum_{n=\infty}^{\infty} \hat{f}_n e^{inx}
\]

and the sequence \(\{\hat{f}_n\}_{n \in \mathbb{Z}} \in \ell^2(\mathbb{Z}) \), that is, \(\sum_{n=\infty}^{\infty} |\hat{f}_n|^2 < \infty \),

Sin-Cos series: when \(f \) has real values for \(x \in \mathbb{R} \) we may prefer to write a series with real terms

\[
[f \text{ minimally have } \hat{f}(n) \equiv \hat{f}_n]
\]

so \(s_f(x) = \hat{f}(0) + \sum_{n=1}^\infty (\hat{f}_n e^{inx} + \hat{f}_n^* e^{-inx}) \in \mathbb{R} \iff \hat{f}_n = \overline{f}_n
\]

So if \(\hat{f}(n) = A_n + i B_n \) and \(\hat{f}(-n) = A_n - i B_n \) then

\[
s_f(x) = \hat{f}(0) + \sum_{n=1}^\infty 2 \Re\left(e^{inx} \hat{f}_n \right) = \hat{f}(0) + \sum_{n=1}^\infty 2(A_n \cos nx - B_n \sin nx)
\]

Denote \(a_n = 2A_n, \ b_n = -2B_n \).

Then \(a_n = \frac{\hat{f}(n) + \hat{f}(-n)}{2} = \frac{1}{2\pi} \int_{-\pi}^{\pi} \left(e^{inx} + e^{-inx} \right) f(x) \, dx = \frac{1}{2\pi} \int_{-\pi}^{\pi} \cos(nx) f(x) \, dx \)

and \(b_n = \frac{1}{2} (\hat{f}(n) - \hat{f}(-n)) = \frac{1}{2\pi} \int_{-\pi}^{\pi} \left(e^{inx} - e^{-inx} \right) f(x) \, dx = \frac{1}{2\pi} \int_{-\pi}^{\pi} 2i \sin(nx) f(x) \, dx \)

while \(\hat{f}_0 = \frac{1}{2\pi} \int_{-\pi}^{\pi} f(x) \, dx = \frac{1}{2} \frac{1}{2\pi} \int_{-\pi}^{\pi} \cos(0x) f(x) \, dx = \frac{1}{2} a_0 \)

for convenience!
So: if \(f(x) \) is real-valued, we can either write
\[
f \sim \sum_{n = -\infty}^{\infty} \hat{f}_n e^{inx}
\]
where
\[
\hat{f}_n = \frac{1}{2\pi} \int_{-\pi}^{\pi} e^{-inx} f(x) \, dx
\]
and for \(f(x) \) real then \(\hat{f}(x) = \overline{\hat{f}(x)} \) so \(\hat{f}_{-n} = \overline{\hat{f}_n} \)

or we can write
\[
f \sim \frac{a_0}{2} + \sum_{n = 1}^{\infty} (a_n \cos nx + b_n \sin nx)
\]
where
\[
a_n = \frac{1}{\pi} \int_{-\pi}^{\pi} \cos(nx) f(x) \, dx, \quad n = 0, 1, 2, \ldots
\]
\[
b_n = \frac{1}{\pi} \int_{-\pi}^{\pi} \sin(nx) f(x) \, dx, \quad n = 1, 2, \ldots
\]
and
\[
a_n = 2 \Re \Re \hat{f}_n
\]
\[
b_n = -2 \Im \Im \hat{f}_n
\]

The set of functions
\[
\{ 1, \cos nx, \sin nx, \cos 2nx, \sin 2nx, \ldots \}
\]
form an orthogonal basis in \(L^2(-\pi, \pi) \).

*
*

In other intervals, \(f(x) \in L^2(a, b) \to \mathbb{R} \)
\[
f \sim \sum_{n} \hat{f}_n e^{i \frac{2\pi}{b-a} x} \quad \Rightarrow \quad \hat{f}_n = \frac{1}{b-a} \int_{a}^{b} e^{-i \frac{2\pi}{b-a} x} f(x) \, dx
\]
\[
f \sim \frac{a_0}{2} + \sum a_n \cos \left(\frac{2\pi}{b-a} x \right) + b_n \sin \left(\frac{2\pi}{b-a} x \right)
\]
Using either representations, we know that

If \(f \in L^2(-\pi, \pi) \) then its Fourier series converges in mean square sense, that is,

\[
S_N(f)(x) = \frac{a_0}{2} + \sum_{n=1}^{N} \left[a_n \cos(nx) + b_n \sin(nx) \right]
\]

we have \(\lim_{N \to \infty} \| f - S_N(f) \|_2 = 0 \)

that is,

\[
\lim_{N \to \infty} \| f - S_N(f) \|_2^2 = \lim_{N \to \infty} \int_{-\pi}^{\pi} \left(f(x) - S_N(f)(x) \right)^2 \, dx = 0
\]

Question: When does the Fourier series converge for each particular \(x \)?

1. For which \(x \) does \(\lim_{N \to \infty} S_N(f)(x) \) exist?
2. Moreover, for which \(x \) does this limit equal \(f(x) \)?

The Dirichlet kernels is very useful in finding the answers. We will see they help with \(S_N(f) \).
The Dirichlet kernels are
\[D_N(x) = \sum_{k=-N}^{N} e^{ikx} \]

On, in terms of this function,
\[D_N(x) = 1 + \sum_{k=1}^{N} (e^{ikx} + e^{-ikx}) = 1 + 2 \sum_{k=1}^{n} \cos(kx) \]

Other normalizations used:
\[\frac{1}{2} \left(1 + 2 \sum_{k=1}^{n} \cos(kx) \right) \]

or
\[\frac{1}{2\pi} D_N(x) := \sigma_N(x) \quad \text{(we will work with this)} \]

Simple formula:
\[D_N(x) = \sum_{k=-N}^{N} e^{ikx} = e^{-iNx} \sum_{k=0}^{2N} e^{i(k+N)x} \]

(Recall \(1 + a + a^2 + \ldots + a^n = \frac{1 - a^{n+1}}{1 - a} \))

\[= e^{-iNx} \frac{1 - e^{i(2N+1)x}}{1 - e^{ix}} = \frac{e^{-iNx} - e^{i(N+1)x}}{1 - e^{ix}} \]

\[= \frac{e^{-i(N+\frac{1}{2})x} - e^{i(N+\frac{1}{2})x}}{e^{-i\frac{x}{2}} - e^{i\frac{x}{2}}} = \frac{\sin(N+\frac{1}{2})x}{\sin\frac{x}{2}} \]

\[\sigma_N(x) = \frac{1}{2\pi} \frac{\sin(N+\frac{1}{2})x}{\sin\frac{x}{2}} \]
Properties of \(f_N(x) \):

- are \(2\pi \)-periodic (since all \(e^{inx} \) are)
- are even functions (since \(e^{ix} \) is even)
- \(f_N(x) = 0 \) \(\forall x \) \((N+\frac{1}{2})x = k\pi \) \((k \in \mathbb{Z}) \)

and choosing the zeroes in \([-\pi, \pi]\) they turn out to be

\[\frac{2k\pi}{2N+1} \] \(\forall k = 0, \pm 1, \ldots, \pm N \) \((2N+1 \text{ in all}) \)

- since between any zeroes there must be at least one point of max or min, and it turns out there is exactly one, there are \(N \) max and \(N \) min
Given $f \in L^2(-\pi, \pi) \to \mathbb{R}$

$$f \sim \sum_{n=\infty}^{\infty} \hat{f}_n e^{inx}$$

$$S_N(f)(x) = \sum_{n=-N}^{N} \hat{f}_n e^{inx} = \frac{a_0}{2} \sum_{n=1}^{N} \left[a_n \cos(nx) + b_n \sin(nx) \right]$$

$$\downarrow$$

Symmetric sum, to get a real expression.

Note: $S_N(f)$ is a trigonometric polynomial, and its Fourier coefficients are

$$\left(\hat{S}_N \right)_n = \begin{cases} \hat{f}_n & \text{if } -N \leq n \leq N \\ 0 & \text{if } |n| > N \end{cases}$$

So the sequence $\left(\hat{S}_N \right)_n \in \mathbb{L}^2(\mathbb{Z})$ and it is a product

$$\left(\hat{S}_N \right) \cdot \hat{g}_N$$

where $(\hat{g}_N)_n = \begin{cases} 1 & \text{if } -N \leq n \leq N \\ 0 & \text{if } |n| > N \end{cases}$

in the sense that $\left(\hat{S}_N \right)_n \cdot \hat{g}_N$

Now, \hat{g}_N does not depend on f! It is a universal cut-off sequence.

Going back to functions, it means that

$$S_N(x) = "\text{some operator}" \text{ with } f \text{ and this universal function } g_N$$

where $g_N(x) = \sum_{n=-N}^{N} (\hat{g}_N)_n e^{inx} = \sum_{n=-N}^{N} e^{inx} = D_N(x) \| |$

This operator is called **convolution**.
Indeed,
\[
\int_{-\pi}^{\pi} \phi(\theta) : D_N(x-\theta) \, d\theta = \int_{-\pi}^{\pi} \left(\sum_{k=-\infty}^{\infty} \hat{\phi}_k e^{ik\theta} \right) \left(\sum_{l=-N}^{N} e^{i(l-x)\theta} \right) \, d\theta \\
= \sum_{k=-\infty}^{\infty} \sum_{l=-N}^{N} \hat{\phi}_k e^{ik\theta} \int_{-\pi}^{\pi} e^{i(l-x)\theta} \, d\theta \\
= 2\pi \sum_{k=-N}^{N} \hat{\phi}_k e^{ik\theta} = 2\pi S_N(\hat{\phi})(x)
\]

So
\[
S_N(\hat{\phi})(x) = \frac{1}{2\pi} \int_{-\pi}^{\pi} \phi(\theta) D_N(x-\theta) \, d\theta \\
= \int_{-\pi}^{\pi} \phi(\theta) \cdot S_N(x-\theta) \, d\theta \\
\Rightarrow S_N(\hat{\phi}) = \hat{\phi} \times S_N
\]

(the reason to work with \(S_N\) rather than \(D_N\);

on Stein's book, the convolution is normalized, be careful)

All this trouble is due to the fact that we work with \(e^{inx}\) with \(\|e^{inx}\|_2 = \sqrt{2\pi}\).

If we worked instead with the orthonormal basis
\[
\left\{ \frac{1}{\sqrt{2\pi}} e^{inx} \right\}_n,
\]
then we do not need to worry about normalization and the Fourier transform is
a unitary operator. But it has been entrenched otherwise, and habits (good or bad) are hard to break.\]
Definition: Given two functions \(f, g \) on an interval \([a, b]\), then their convolution is
\[
(f * g)(x) = \int_a^b f(x-s)g(s)\,ds.
\]

Properties of convolution

Assuming \(f, g \) are nice functions (say, continuous on \([a, b]\)) then
\[
\begin{align*}
\&f * g = g * f \quad \rightarrow \text{commutative} \\
\&f * (g + h) = f * g + f * h \quad \rightarrow \text{bilinear} \\
\&f * (cg) = cf * g \quad (\text{for } c \text{ constant}) \\
\&f * (g * h) = (f * g) * h \quad \rightarrow \text{associative}
\end{align*}
\]

Exercise: Prove these.

And most importantly, if \(f, g \) are \(2\pi \)-periodic,
\[
\hat{f * g} = \hat{f} \cdot \hat{g}.
\]

(The \(2\pi \) is the price to pay since \(\| e^{inx} \|_2 = \frac{\sqrt{2\pi}}{n} \)).

Proof
\[
(f * g)_n = \frac{1}{2\pi} \int_{-\pi}^{\pi} e^{-inx} (f * g)(x)\,dx
\]
\[
= \frac{1}{2\pi} \int_{-\pi}^{\pi} e^{-inx} \left(\int_{-\pi}^{\pi} f(x-s)g(s)\,ds \right)\,dx
\]
\[
= \frac{1}{2\pi} \int_{-\pi}^{\pi} \int_{-\pi}^{\pi} e^{-inx} f(x-s)g(s)\,ds\,dx
\]
\[
= \frac{1}{2\pi} \int_{-\pi}^{\pi} \int_{-\pi}^{\pi} e^{-inx} f(x-s)g(s)\,ds\,dx
\]

\(x-s = y \)
\[
\frac{1}{2\pi} \int_{-\pi}^{\pi} d\theta \, e^{-i\omega \theta} \int_{-\pi}^{\pi} dy \, g(y) \, e^{-i y \theta} = \int_{-\pi}^{\pi} dy \, g(y) \, e^{-i y \theta} \quad \text{since } g \text{ is } 2\pi - \text{periodic}
\]

\[
= \frac{1}{2\pi} \int_{-\pi}^{\pi} d\theta \, e^{-i\omega \theta} \hat{f}(\theta) \int_{-\pi}^{\pi} dy \, g(y) \, e^{-i y \theta} = 2\pi \hat{f}_n \delta_n^*.
\]

Corollary

\[
S_N(f) = f * \delta_N
\]

\[
\sum_{n=-N}^{N} \hat{f}_n e^{inx} = \int_{-\pi}^{\pi} f(\theta) \, \delta_N(x - \theta) \, d\theta
\]

Corollary to Corollary

The linear operator \(P : L^2(-\pi, \pi) \rightarrow L^2(-\pi, \pi) \)

\[
Pf = f * \delta_N
\]

is the orthogonal projection onto

\[
\text{span} \{1, e^{ix}, \ldots, e^{ixN}\} = \text{span} \{1, \cos x, \sin x, \ldots, \cos Nx, \sin Nx\}
\]

Therefore \(f * \delta_N \) gives the best approximation of \(f \) (in least mean square sense) of \(f \) by trigonometric polynomials in \(\cos kx, \sin kx, k=1,2,\ldots, N \).