When do Fourier series converge (point-wise)?

Recall that \(f \) is called differentiable at \(x \) if
\[
\lim_{h \to 0} \frac{f(x+h) - f(x)}{h} \text{ exists; then } f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}
\]

and \(f'(x) \) = slope of the tangent line to the graph of \(f \) at the point \((x, f(x))\).

\[
\tan \theta = f'(x)
\]

Def. \(f \) is said to have a right-hand derivative if
\[
\lim_{h \to 0^+} \frac{f(x+h) - f(x)}{h} \text{ exists; } f'_+(x) = \lim_{h \to 0^+} \frac{f(x+h) - f(x)}{h}
\]

slope of the tangent line to the part of the graph to the right of \(x \).

Similarly
Def. \(f \) has a left-hand derivative if
\[
\lim_{h \to 0^-} \frac{f(x+h) - f(x)}{h} \text{ exists; } f'_-(x) = \lim_{h \to 0^-} \frac{f(x+h) - f(x)}{h}
\]
Example of a function which has both left and right derivatives, but it is not differentiable:

Ex. \(f(x) = |x| \) has right and left derivatives at \(x = 0 \)

\[f'_+(0) = 1 \quad \text{and} \quad f'_-(0) = -1 \]

Theorem
Suppose \(f \) is piecewise continuous on \((-\pi, \pi)\) and periodic on \(\mathbb{R} \) with period \(2\pi \).

Then at each point \(x \) where \(f'_+(x), f'_-(x) \) exist

\[
\lim_{N \to \infty} S_n(f)(x) = \frac{f(x+) + f(x-)}{2}
\]

In particular, if \(f \) is continuous at \(x \) then

\[
\lim_{N \to \infty} S_n(f)(x) = f(x)
\]

Remark
Be careful about \(x = \pm \pi \)

the function

\(f \) is periodic, period \(2\pi \)

but the points \(x = -\pi \) and \(x = \pi \) are points of discontinuity (for its periodic continuation from \([-\pi, \pi)\) to \(\mathbb{R} \) and

\[
\lim_{N \to \infty} S_n(f)(\pm \pi) = \frac{f(\pi-) + f(-\pi+)}{2} = \frac{b}{2}.
\]
Remark if piecewise continuous \(f \in L^1(0, \pi) \)

so \(f \) has a Fourier series.

Note

- There are many theorems of this type: if \(f \) is a
 nice function in this and that sense, then its Fourier
 series converges to that.

 But this theorem is quite useful in applications.

- If \(f \) does not satisfy the hypotheses of the theorem,
 it does not mean that the Fourier series does not
 converge at \(x \)! (The theorem gives sufficient conditions
 for convergence, they are not necessary.)

For the proof, we first need two lemmas.

The first lemma is a special case of

Riemann-Lebesgue Lemma:

If \(f \) is integrable then

\[
\lim_{n \to \infty} \int_a^b f(x) \sin(nx) \, dx = 0
\]

\[
\lim_{n \to \infty} \int_a^b f(x) \cos(nx) \, dx = 0
\]

or, together,

\[
\lim_{n \to \infty} \int_a^b f(x) e^{inx} \, dx = 0
\]

Read: if \(f \in L^1(0, b) \) then \(f_n \to f \) pointwise as \(n \to \infty \).

We will discuss later the duality: the more regular \(f \) is,
the more rapidly \(f_n \to 0 \) as \(n \to \infty \).
It was assumed that $\int_{-\pi}^{\pi} |f(x)| < \infty$, that is, $f \in L^1(-\pi, \pi)$ (and not in L^2!) This is a more stringent condition.

For example, $\frac{1}{x^2/3} \in L^1(-\pi, \pi)$ but $\not\in L^2(-\pi, \pi)$.

In general, note for bounded intervals

$$f \in L^2(a, b) \implies f \in L^1(a, b)$$

(because by Cauchy-Schwarz

$$\|f\|_{L^1} = \int_a^b |f(x)| \, dx = \langle f, 1 \rangle \leq \|f\|_{L^2} \|1\|_{L^2} \leq \frac{1}{\sqrt{\infty}} = b-a$$

So: $L^1(a, b) \subset L^2(a, b)$
Lemma 1

If \(G(x) \) is a function piecewise continuous on \((0, \pi)\)
then \(\lim_{N \to \infty} \int_0^{\pi} G(x) \sin (N+\frac{1}{2})x \, dx = 0 \) \((\text{for } N \in \mathbb{Z}_+)\)

Proof

\[
\int_0^{\pi} G(x) \sin (N+\frac{1}{2})x \, dx = \int_0^{\pi} G(x) \sin^2 \frac{x}{2} \sin Nx \, dx + \int_0^{\pi} G(x) \sin \frac{x}{2} \cos Nx \, dx
\]

where \(a_N, b_N \) are coeff in the Fourier series on \(G \cos \), respectively \(G \sin \)

Since the Fourier coef \(e^{-iNz} \to a_N \to 0, b_N \to 0 \)

Recall \(\sigma_N(x) = \frac{1}{2\pi} \sum_{n=-N}^{N} e^{inx} = \frac{1}{2\pi} \frac{\sin (N+\frac{1}{2})x}{\sin \frac{x}{2}} \)

Note that \(\int_0^{\pi} \sigma_N(x) \, dx = \frac{1}{2\pi} \sum_{n=-N}^{N} \int_0^{\pi} e^{inx} \, dx = \frac{1}{2\pi} \cdot \pi = \frac{1}{2} \)

Lemma 2

Suppose \(g(x) \) is piecewise cont and \(g'(0) \) exist
Then \(\lim_{N \to \infty} \int_0^{\pi} g(x) \sigma_N(x) \, dx = \frac{1}{2} g(0+) \)

Proof

Write \(g(x) = [g(x) - g(0^+)] + g(0^+) \)
Then \(\int_0^{\pi} \sigma_N(x) g(0^+) \, dx = \frac{1}{2} g(0^+) \), while
\[
\int_0^N \left[g(x) - g(0+) \right] \delta_N(x) = \int_0^N \frac{g(x) - g(0^+)}{\sin x} \min \left(N + \frac{1}{2}, x \right) \, dx
\]

\[
= g(x), \text{ piecewise continuous}
\]

Since
\[
\lim_{x \to 0^+} \frac{g(x) - g(0^+)}{\sin x} = \lim_{x \to 0^+} \frac{g(x) - g(0^+)}{x} = g'(0) = 2
\]

So by Lemma 1 has zero limit

\[\square\]

Proof of the Theorem

Recall:

Def. A function \(f \) is called **piecewise continuous** on \((a, b)\) if there are a finite number of intervals, divided at

\[a = a_0 < a_1 < a_2 < a_3 < \ldots < a_p = b\]

so that \(f \) is continuous on each interval \((a, a_1), (a_1, a_2), \ldots, (a_p, b)\)

and \(f \) has lateral limits at each \(a_0, a_1, \ldots, a_p \):

Thus exist (and are finite) \(\lim_{x \to a_k^-} f(x) = f(a_k^-) \)

and \(\lim_{x \to a_k^+} f(x) = f(a_k^+) \)

(\(f \) need not be defined at \(a_0, a_1, \ldots, a_p \))

Ex.

\[a \quad a_0 \quad a_1 \quad a_2 \quad b\]

piecewise continuous function
The point is that on each subinterval $f: (a_k, a_{k+1}) \rightarrow \mathbb{R}$ is continuous and it could be extended to a continuous function on $[a_k, a_{k+1}]$, hence f has a max and a min on $[a_k, a_{k+1}]$ and it is Riemann integrable:

$$\int_{a_k}^{a_{k+1}} f(x) \, dx = \sum_{k=0}^{p} \int_{a_k}^{a_{k+1}} f(x) \, dx$$ well-defined.

So $f \in L^2$ also, and f has a Fourier series

$$f = \frac{a_0}{2} + \sum_{n=1}^{\infty} (a_n \cos nx + b_n \sin nx)$$

Consider the partial sums

$$(S_N f)(x) = \frac{a_0}{2} + \sum_{n=1}^{N} (a_n \cos nx + b_n \sin nx)$$

We have

$$(S_N f)(x) = \delta_N * f = \int_{-\pi}^{\pi} f(s-x) \delta_N(s) \, ds = \int_{-\pi}^{\pi} f(s-x) \delta_N(s) \, ds - \int_{-\pi}^{\pi} f(s-x) \delta_N(s) \, ds$$

and using Lemma 2:

We have

$$\lim_{N \to \infty} (S_N f)(x) = \frac{1}{2} f(x+) + \frac{1}{2} f(x-)$$
Example

The Fourier series of

\[f(x) = x + \pi \text{ for } x \in (-\pi, \pi) \]

then continued \(2\pi\)-periodic.

\[a_0 = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \, dx = \frac{1}{\pi} \cdot \frac{2\pi \cdot 2\pi}{2} = 2\pi \]

\[a_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \cos nx \, dx = \frac{2\sin(n\pi)}{n} = 0 \]

\[b_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \sin nx \, dx = \frac{\sin(n\pi) - \cos(n\pi) \cdot n\pi}{n^2 \pi} = \frac{(-1)^n n\pi}{n^2} \]

Fourier Series

\[2\pi + \sum_{n=1}^{\infty} (-1)^n \frac{n\pi}{n^2} \sin(nx) = \sqrt{\int f(x)^2 \, dx} \text{ for } x \in (-\pi, \pi) \]

\[0 + \frac{2\pi}{\pi} = 2\pi \]
Corollary: If f is 2π periodic on \mathbb{R}, continuous, and has left and right derivatives at all points x, then

$$f(x) = \frac{a_0}{2} + \sum_{n=1}^{\infty} (a_n \cos nx + b_n \sin nx) \quad \text{for all } x$$