Gibbs Phenomenon

\[2\pi S_n f(x) = \pi \sum_{n=1}^{\infty} \frac{f^{(n)}(0)}{n!} \sin \frac{nx}{2} \]

has a huge max at \(x=0 \), \(\approx 2\pi \) at \(x=\pm \frac{\pi}{n} \)

For \(N \) large \(\Rightarrow \) dense maxes \(\Rightarrow \) rapid oscillations

The main contribution in the integral is thus collected around \(x=0 \).
If \(f \) is continuous at \(x \) then \(f(0) \approx f(x) \) in this interval so the integral \(\approx f(x) \times 2\pi \) Envelope.

Now take an example with \(f \) discontinuous at \(x=0 \), \(f(0) = 0 \)

\[f(x) = \begin{cases} 1 & x > 0 \\ 0 & x < 0 \end{cases} \]

For \(x > 0 \) Take also \(x \) small

\[2\pi S_n f(x) = \int_{0}^{\pi} D_n(x,0) \, dx \quad \text{where } x \text{ small}, x > 0 \]

and main contribution is around \(x = 0 \)

\[\approx \int_{-\pi}^{\pi} D_n(0,0) \, d\sigma \quad \text{even} \]

\[= 2 \int_{0}^{\pi} D_n(0,0) \, d\sigma = 2 \int_{0}^{\pi} \frac{\sin \left(\frac{N+1}{2} \right) \sigma}{\sin \frac{\sigma}{2}} \, d\sigma \]

\(\text{since } x \text{ is small} \quad \approx 4 \int_{0}^{\pi} \frac{\sin \left(\frac{N+1}{2} \right) \sigma}{\sigma} \, d\sigma = 4 \int_{0}^{\pi} \frac{\sin \frac{\sigma}{2}}{\sigma} \, d\sigma \quad \text{for } \sin \left(\frac{N+1}{2} \right) \sigma = 0 \]

\(\text{if } f(0) = 0 \), finesses \(f \) small \(x \), so its max is at the first zero of its derivative \(\sin \left(\frac{N+1}{2} \right) x = 0 \text{ first time } \sin x = \frac{\pi}{N+\frac{1}{2}} \)

and its value is \(\approx 4 \int_{0}^{\pi} \frac{\sin \frac{\sigma}{2}}{\sigma} \, d\sigma \)

\[\approx 2 \pi \int_{0}^{\pi} \frac{\sin \frac{\sigma}{2}}{\sigma} \, d\sigma \approx 1.1 \quad \text{Overshoot!} \]
The more derivatives f has, the faster f_n decay.

Let $f(x)$ be 2π-periodic, continuous, piecewise differentiable.

Then f_n decay (at least as fast as) $\frac{1}{n^2}$:

$$f_n = \frac{1}{2\pi} \int_{-\pi}^{\pi} e^{-inx} f(x) \, dx$$

Let x_0 where $f'(x_0)$ exist.

Then

$$f_n = \frac{1}{2\pi} \left(\int_{-\pi}^{x_0} e^{-inx} f(x) \, dx + \int_{x_0}^{\pi} e^{-inx} f(x) \, dx \right)$$

Integrate by parts

$$= \frac{1}{2\pi} \left[\frac{1}{in} e^{-inx} f(x) \right]_{-\pi}^{x_0} + \frac{1}{in} \int_{-\pi}^{x_0} e^{-inx} f'(x) \, dx$$

$$+ \frac{1}{in} e^{-inx} f(x) \int_{x_0}^{\pi} + \frac{1}{in} \int_{x_0}^{\pi} e^{-inx} f'(x) \, dx \right]$$

Since f' is integrable on $[-\pi, \pi]$ and $\lim_{x \to \pm \pi} f(x) = f(x)$

$$= \frac{1}{2\pi} \frac{1}{in} e^{-inx} \left[f(x_0) - f(x_{0-}) \right] + \frac{1}{2\pi} \frac{1}{in} \int_{-\pi}^{\pi} e^{-inx} f'(x) \, dx$$

If f is continuous at x_0

$$= \frac{1}{2\pi in} \int_{-\pi}^{\pi} e^{-inx} f'(x) \, dx.$$ \text{Conclude: If } f' \text{ is } 2\pi \text{ periodic, and}

If f' jumps at x_0, then f_n behaves like $\frac{1}{n^2}$

but if f'' exists piecewise then f_n behaves like $\frac{1}{n^3}$

Etc.

The more derivatives, the faster the decay of f_n.