1. For each of the matrices A below:
 a) classify A (self-adjoint, unitary etc.);
 b) find a unitary U which diagonalizes A;
 c) give the spectral decomposition in terms of the eigenspace projections;
 d) verify the resolution of the identity (completeness relation)

 (i) $A = \begin{bmatrix} 2 & i & 0 \\
 -i & 1 & -i \\
 0 & i & 2 \end{bmatrix}, \quad i = \sqrt{-1}$;
 (ii) $A = \begin{bmatrix} 1 & 1 & -1 \\
 1 & 1 & 1 \\
 -1 & 1 & 1 \end{bmatrix}$

2. Show that the following set of functions V is a complex vector space:

 $V = \{ f : [0,1] \to \mathbb{C} | f \text{continuous} \}$

 (i) Show that $\langle f, g \rangle_1 = \int_0^1 fg \, dx$ is an inner product on V.
 Show that the integration operator $Tf(x) = \int_0^x f(t) \, dt$ is linear on V and
 find its adjoint T^*.

 (ii) Show that $\langle f, g \rangle_w = \int_0^1 wfg \, dx$ is an inner product on V if w is a
 positive function (w is called a weight).
 Show that the integration operator $Tf(x) = \frac{1}{w(x)} \int_0^x f(t) \, dt$ is linear on V
 and find its adjoint T^* with respect to the inner product $\langle \cdot, \cdot \rangle_w$.

 Warning: these are not a Hilbert spaces (they are not complete in these norms).

3. Suppose $(e_j)_{j=1\ldots n}$ and $(f_j)_{j=1\ldots n}$ are orthonormal bases for \mathbb{C}^n. Sup-
 pose $M : \mathbb{C}^n \to \mathbb{C}^n$ is the linear operator satisfying $Me_j = f_j$.
 Show that M is unitary.

4. Prove that no matrix $\begin{bmatrix} 1 & c \\
 0 & 1 \end{bmatrix}$ is similar to a real or complex diagonal
 matrix if $c \neq 0$. Interpret the result geometrically in terms of a transform-
 ation of points in R^2 onto points in R^2.

1
5.a) If A has eigenvalues 0 and 1, corresponding to the eigenvectors \[
\begin{bmatrix}
1 \\
2
\end{bmatrix}
\quad \text{and} \quad \begin{bmatrix}
2 \\
-1
\end{bmatrix},
\] how can one tell in advance that A is self-adjoint and real?

b) What is its trace? Its determinant?

c) What is A?

6. a) (Reminder)

a. Show that the n complex solutions of the equation $z^n = 1$ are $z_k = \exp(2\pi ik/n)$, $k = 0, 1, \ldots, n - 1$ (they are called the n^{th} roots of unity).

b. Show that $z_k = z_1^k$. (z_1 is called the “primitive” n^{th} root of unity.)

c. Why do we stop the index at $k = n - 1$? What is z_n, z_{n+1}?

d. Plot these n solutions $z_0, z_1, \ldots, z_{n-1}$ in the complex plane for (i) $n = 2$; (ii) $n = 3$; (iii) $n = 4$; (iv) for a general n. (Use the one separate plane for each n).

b) Let $w = e^{2\pi i/n}$ be the “primitive” n^{th} root of unity.

Consider $[U_{jk}] = [w^{jk}] \frac{1}{\sqrt{n}}$, $j, k = 0, 1, \ldots, n - 1$, which is the Fourier Matrix U:

\[
U = \begin{bmatrix}
1 & 1 & 1 & \cdots & 1 \\
1 & w & w^2 & \cdots & w^{n-1} \\
1 & w^2 & w^4 & \cdots & w^{2(n-1)} \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
1 & w^{n-1} & w^{2(n-1)} & \cdots & w^{(n-1)^2}
\end{bmatrix} \frac{1}{\sqrt{n}} = [U_{jk}].
\]

TRUE or FALSE: U is unitary. Why?

7. Define $\exp(A)$, where A is any square matrix, by the power series expansion of $\exp(x) = 1 + x + \frac{1}{2}x^2 + \cdots$ (Assume that the series $\exp(A)$ does converge... it does.)

Show that if A is diagonalizable, i.e. there exists a matrix S which reduces A to diagonal form by a similarity transform, then one has

$$
\det \exp(A) = \exp \tr(A).
$$