1. Let A be a self-adjoint matrix. Show that there is a self-adjoint matrix B so that
\[B^3 = A(A - 2I)(A - 3I) \]
What are the eigenvalues of B in terms of the eigenvalues of A?
What are the eigenvectors of B in terms of the eigenvectors of A?
Will B commute with A?

2. Assume that A is a symmetric matrix with eigenvalues not equal to 3.
True or false? The matrices $A(A - 2I)$ and $(A - I)(A - 3I)^{-1}$ commute.

3. Show that if N is a normal matrix then $\|Nx\| = \|N^*x\|$ for all vectors x.

And from Strang, 3rd Ed. (Caution! this is the old edition, see the problems on Carmen),
p.319 solve: 5.3, 5.4, 5.5, 5.19, 5.20(a)(b).