When do Fourier series converge
(point-wise)?

Recall that f is called differentiable at x if
$$\lim_{h \to 0} \frac{f(x+h) - f(x)}{h} \text{ exists}; \therefore f'(x)$$
and $f'(x)$ = slope of the tan line to the graph of f.
at the point $(x, f(x))$.

\[\tan \theta = f'(x) \]

Def. f is said to have a right-hand derivative
if
$$\lim_{h \to 0} \frac{f(x+h) - f(x)}{h} \text{ exists}; \quad f'_+(x)$$

slope of the tan line
to the part of the graph
to the right of x.

Similarly
Def. f has a left-hand derivative
if
$$\lim_{h \to 0} \frac{f(x+h) - f(x)}{h} \text{ exists}; \quad f'_-(x)$$
Example of a function which has both left and right derivatives, but it is not differentiable:

Ex.: \(f(x) = |x| \) has right and left derivatives at \(x = 0 \)

\[f'_+(0) = 1 \quad \text{and} \quad f'_-(0) = -1 \]

Theorem

Suppose \(f \) is piecewise continuous on \((-\pi, \pi)\) and periodic on \(\mathbb{R} \) with period \(2\pi \).

Then at each point \(x \) where \(f'_+(x), f'_-(x) \) exist

\[\lim_{N \to \infty} \frac{S_N(f)(x) = f(x+ \frac{2\pi}{N}) + f(x- \frac{2\pi}{N})}{2} \]

In particular, if \(f \) is continuous at \(x \) then

\[\lim_{N \to \infty} S_N(f)(x) = f(x) \]

Remark

be careful about \(x = \pm \pi \)

the function

is periodic, period \(2\pi \)

but the points \(x = -\pi \) and \(x = \pi \) are points of
discontinuity (\(f \) is periodic and continuous from
\(-\pi, \pi) \to \mathbb{R} \) and

\[\lim_{N \to \infty} S_N(f)(\pm \pi) = \frac{f(\pi) + f(-\pi)}{2} = \frac{b}{2} \].
Remark: If piecewise continuous \(f \in L^1(-\pi, \pi) \)
so \(f \) has a Fourier series.

Note:
- There are many theorems of this type: if \(f \) is a
 nice function in this and that sense, then its Fourier
 series converges to that.

 But this theorem is quite useful in applications.

- If \(f \) does not satisfy the hypothesis of the theorem,
 it does not mean that the Fourier series does not
 converge at \(x \)! (The theorem gives insufficient conditions
 for convergence, they are not necessary.)

For the proof, we first need two lemmas.

The first lemma is a special case of

\[\text{Riemann-Lebesgue Lemma:} \]

If \(f \) is integrable then
\[
\lim_{n \to \infty} \int_a^b f(x) \sin(nx) \, dx = 0
\]
\[
\lim_{n \to \infty} \int_a^b f(x) \cos(nx) \, dx = 0
\]

or, together, \(\lim_{n \to \infty} \int_a^b f(x) e^{inx} \, dx = 0 \)

(Read: if \(f \in L^1(a, b) \) then \(f_n \to f \) as \(n \to \infty \))

We will discuss later the duality: the more regular \(f \) is,
the more rapidly \(f_n \to f \) at \(a, b \) as \(n \to \infty \).
Digression

It was assumed that \(\int_{-\pi}^{\pi} |f(x)| < \infty \),

that is, \(f \in L^1(-\pi, \pi) \) (and not in \(L^2 \)). This is a more stringent condition.

For example, \(\frac{1}{x^{2/3}} \in L^1(-\pi, \pi) \) but \(\notin L^2(-\pi, \pi) \).

In general, note for bounded intervals

\[f \in L^2(a, b) \implies f \in L^1(a, b) \]

(because by Cauchy-Schwarz)

\[\|f\|_1 = \int_a^b |f(x)| \, dx = \langle |f|, 1 \rangle \leq \|f\|_2 \cdot \|1\|_2 \leq \frac{\|f\|_2}{2} \cdot \frac{1}{2} = \frac{1}{4} (b-a) \]

\[\implies \quad L^1(a, b) \subseteq L^2(a, b) \]
Lemma 1

If $G(x)$ is a function piecewise continuous on $(0, \pi)$ then

$$
\lim_{N \to \infty} \int_{0}^{\pi} G(x) \sin \left((N+\frac{1}{2})x \right) \, dx = 0 \quad (\text{for } N \in \mathbb{Z}_+)
$$

Proof

$$
\int_{0}^{\pi} G(x) \sin \left((N+\frac{1}{2})x \right) \, dx = \int_{0}^{\pi} G(x) \cos \frac{x}{2} \sin N x \, dx + \int_{0}^{\pi} G(x) \sin \frac{x}{2} \cos N x \, dx
$$

$$
= a_N
$$

$$
= b_N
$$

where a_N, b_N are coeff in the Fourier series on $G \cos$, respectively $G \sin$.

Since the Fourier coeff $e^{-iNz} \Rightarrow a_N \to 0$, $b_N \to 0$.

Lemma 2

Recall $\delta_N(x) = \frac{1}{2\pi} \sum_{n=-N}^{N} e^{inx} = \frac{1}{2\pi} \frac{\sin \left((N+\frac{1}{2})x \right)}{\sin \frac{x}{2}}$

Note that $\int_{0}^{\pi} \delta_N(x) \, dx = \frac{1}{2\pi} \sum_{n=-N}^{N} \int_{0}^{\pi} e^{inx} \, dx = \frac{1}{2\pi} \cdot \pi = \frac{1}{2}$

Suppose $g(x)$ is piecewise cont and $g'(0)$ exist.

Then $\lim_{N \to \infty} \int_{0}^{\pi} g(x) \delta_N(x) \, dx = \frac{1}{2} g'(0)$

Proof

Write $g(x) = [g(x) - g(0^+)] + g(0^+)$

Then $\int_{0}^{\pi} \delta_N(x) g(0^+) \, dx = \frac{1}{2} g(0^+)$, while
\[\int_0^N [g(x) - g(x^+)] \, dN(x) = \int_0^N \frac{g(x) - g(x^+)}{\min\left(\frac{x}{N + \frac{1}{2}}\right)} \, dx = g(x), \text{ piecewise continuous} \]

Since \(\lim_{x \to 0^+} \frac{g(x) - g(x^+)}{\min\frac{x}{2}} \)

\[= \lim_{x \to 0^+} \frac{g(x) - g(x^+)}{x} \cdot \frac{x}{\min\frac{x}{2}} = g'(0) \cdot \frac{1}{2} \]

so by Lemma 1 has zero limit

\[\Box \]

Proof of the Theorem

Recall

Def. A function \(f \) is called **piecewise continuous** on \((a, b)\)

if there are a finite number of intervals, divided all

\[a = a_0 < a_1 < a_2 < a_3 < \ldots < a_p = b \]

so that \(f \) is continuous on each interval \((a_i, a_{i+1})\), \(i = 0, 1, 2, \ldots, p\)

and \(f \) has lateral limits at each \(a_0, a_1, \ldots, a_p \):

- Thus exist (and are finite) \(\lim_{x \to a_k} f(x) = f(a_k^+) \)
- \(x > a_k \)

\(\lim_{x \to a_k} f(x) = f(a_k^-) \)

\(x \to a_k \)

\(x < a_k \)

(\(f \) need not be defined at \(a_0, a_1, \ldots, a_p \))

Ex.

\[\text{piecewise continuous function} \]
The point is that on each subinterval
\[f : (a_{k-1}, a_k) \to \mathbb{R} \] is continuous
and it could be extended to a continuous function on \([a_{k-1}, a_k]\), hence \(f\) has a max and a
min on \([a_{k-1}, a_k]\) and it is Riemann-integrable:

\[
\int_a^b f(x) \, dx = \sum_{k=0}^{p-1} \int_{a_k}^{a_{k+1}} f(x) \, dx \quad \text{well defined!}
\]

So \(f \in L^2\) also, and \(f\) has a Fourier series

\[
f \approx \frac{a_0}{2} + \sum_{n=1}^{\infty} \left(a_n \cos nx + b_n \sin nx \right)
\]

Consider the partial sums

\[
(S_Nf)(x) = \frac{a_0}{2} + \sum_{n=1}^{N} \left(a_n \cos nx + b_n \sin nx \right)
\]

We have

\[
(S_Nf)(x) = \delta_N * f = \int_{-\pi}^{\pi} f(x-y) \, \delta_N(y) \, dy =
\]

\[
= \int_{-\pi}^{\pi} f(x-y) \, \delta_N(y) \, dy = \int_{-\pi}^{\pi} f(x-y) \, \delta_N(y) \, dy
\]

and using Lemma 2

We have

\[
\lim_{N \to \infty} (S_Nf)(x) = \frac{1}{2} \, f(x+) + \frac{1}{2} \, f(x-)
\]

\(\square\)
Example

The Fourier series of

\[f(x) = x + \pi \text{ for } x \in (-\pi, \pi) \]

then continued \(2\pi\)-periodic

\[a_0 = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \, dx = \frac{1}{\pi} \cdot \frac{2\pi \cdot 2\pi}{2} = 2\pi \]

\[a_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \cos nx \, dx = \frac{2\sin(n\pi)}{n} = 0 \]

\[b_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \sin nx \, dx = \frac{\pi \sin(n\pi) - \cos(n\pi) \cdot n\pi}{n^2 \pi} = \frac{(-1)^n}{2n} \]

Fourier series

\[f(x) = \sum_{n=1}^{\infty} (-1)^n \frac{2}{n} \sin(nx) \]

\[\pi + \sum_{n=1}^{\infty} (-1)^n \frac{2}{n} \sin(nx) = \sqrt{\left(\frac{f(-\pi) + f(\pi)}{2} \right) - \frac{2\pi}{\pi} = \pi} \]
Corollary. If \(f \) is \(2\pi \)-periodic on \(\mathbb{R} \), continuous, and has left and right derivatives at all points \(x \) then

\[
\hat{f}(x) = \frac{a_0}{2} + \sum_{n=1}^{\infty} (a_n \cos nx + b_n \sin nx) \quad \text{in all } x
\]