Uniqueness of the Green's Function

The Fredholm alternative

There is no guarantee that a GF exists

Example

\[u'' = f, \quad u(0) = 0, \quad u'(1) = 0 \]

\[
\text{Solve } G'' = \delta(x-t) \Rightarrow G' = H(x-t) + C(t) \Rightarrow \\
G(x, t) = (x-t)H(x-t) + C(t)x + D(t) \\
G(0, t) = C(t) = 0 \\
G_x(1, t) = 1 \neq 0 \quad \text{no solution!}
\]

To see what is going on, integrate directly \(u'' = f \)

\[u(x) = \int_0^x f(t) dt + C \]

\[u'(0) = 0 \Rightarrow C = 0 \quad \text{and} \quad u'(1) = \int_0^1 f(t) dt = 0 \quad \text{only for special } f \]

Note: If \(\int_0^1 f = 0 \) then there are solutions: \(u(x) = \int_0^x \frac{3}{5} f(t) dt + D \)

But: **Theorem** Consider \(L(x, u, \frac{d}{dx}) = \sum_{k=0}^{n} a_k(x) \frac{d^k}{dx^k} u \)

with \(n \)-linearly independ homogeneous B.C.

If the problem has a GF, then it is unique.

Why? Let \(G_1, G_2 \) be 2 GF: \(LG_1 = \delta(x-t) \), \(LG_2 = \delta(x-t) \), \(BC[G_1] = 0 \), \(BC[G_2] = 0 \)

Then \(G = G_1 - G_2 \) satisfies \(LG = 0 \) and \(BC[G] = 0 \)

From the theory of ODEs \(\Rightarrow G \equiv 0 \quad \text{no } G_1 = G_2 \)
Theorem: The following are equivalent:

(i) The only sol. of the homog \(L \mathbf{u} = 0 \) \(\mathbf{Bc} \mathbf{u} = 0 \) is \(\mathbf{u} = 0 \)

(ii) \(L \mathbf{u} = \mathbf{f} \) has a sol. for every \(\mathbf{f} \)

(iii) \(L \) has a Green's function.

The proof is not given here.

Usually the first 2 are formulated as an instance of Fredholm's alternative: either \(\{ L \mathbf{u} = \mathbf{f} \} \) has a unique sol. for all \(\mathbf{f} \)

or \(\{ L \mathbf{u} = 0 \} \) has no non-zero solutions.

(These statements are mutually exclusive.)