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ABSTRACT. We survey several recent achievements in the KAM theory. The achievements
chosen pertain to Hamiltonian systems only and are closely connected with the content of
Kolmogorov’s original theorem of 1954. They include the weak nondegeneracy conditions,
Gevrey smoothness of families of perturbed invariant tori, the “exponential condensation”
of perturbed tori, destruction mechanisms of the resonant unperturbed tori, the excitation
of the elliptic normal modes of the unperturbed tori, and “atropic” invariant tori (i.e., tori
that are neither isotropic nor coisotropic). The exposition is informal and nontechnical,

and, as a rule, the methods of proofs are not discussed.
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1. INTRODUCTION

The descriptive term “KAM theory” was first used in works [61,152] for the theory of
quasi-periodic motions in smooth and analytic dynamical systems founded by A.N. Kol-
mogorov [67], V.I. Arnol'd [3,4], and J. Moser [89]. The contribution of each of the three
authors is vividly reviewed in [8,9]. During almost fifty years that have elapsed since
Kolmogorov’s breakthrough four-paged note [67] appeared, the KAM theory has turned
a vast collection of ideas, methods, and results pertaining to quasi-periodic motions and
therefore to “small divisors” in dynamical systems. It is often regarded as one of the most
important attainments in the qualitative theory of ordinary differential equations over the
whole second half of the twentieth century [134]. For instance, according to the KAM
theory, a typical (in the sense to be made precise) Hamiltonian or reversible system admits
many invariant tori of various dimensions which are organised into rather regular (although
Cantor-type) multi-parameter families. This implies, in particular, that the thesis “A
generic Hamiltonian system is ergodic on (almost) every compact and connected energy
level hypersurface” widespread formerly is incorrect [3, 4,6, 10,18,84,92,111, 149, 150, 152].
During the last decade and a half, a deep and versatile progress in the KAM theory has
taken place, two most significant achievements being perhaps the KAM theory for infinite
dimensional systems (see [73,74,110] and references therein) and the so called “direct
methods” in proving the existence and persistence theorems for quasi-periodic motions
(see [34-36,44,47,48] and references therein).

The present survey, however, touches upon none of these impressive discoveries. Ei-
ther it does not consider the two theories “accompanying” the KAM theory, namely, the
Nekhoroshev theory [10,11,49,82,95-97] and the theory of Arnol’d’s diffusion [5,10, 33,
37,78,82,83,152]. Instead, our goal is to describe the most substantial results in the KAM
theory of the last decade and a half that are closely connected with the content of Kol-
mogorov’s theorem [67] of 1954, i.e., with perturbations of completely integrable finite
dimensional Hamiltonian systems. In fact, the studies of quasi-periodic motions in Hamil-
tonian systems constitute the main part of the KAM theory although there are also well
developed theories of quasi-periodic motions in reversible (see [20-22,60,80,109,112,119-
122,126, 127,144] and references therein), volume-preserving (see [19,21,22,60,129] and
references therein), and dissipative [19,21, 22, 60] systems.

The exposition is as non-technical and informal as possible, in particular, we are trying
to avoid precise formulations of the statements (which are usually quite long in the KAM
theory) and even precise definitions and, as a rule, confine ourselves with references to the
original papers. The reader is not assumed to possess any prior knowledge of the theory.
Apart from this Introduction, the paper consists of six sections, each being devoted to one

of the results we are discussing or a group of close results (a “topic”).
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Although the literature devoted to the KAM theory is now enormous, there are not so
many monographs or expository works. One may mention relatively recent books [22, 78]
and memoir [19] which treat some problems of the finite dimensional part of the theory very
minutely. For the first acquaintance with the subject, manual [7], book [132], survey [18],
and very recent tutorials [81,111] are highly recommended. A detailed survey of the
Hamiltonian finite dimensional KAM theory including the latest results is presented in [10]
(the first Russian edition of this book of 1985 and the English editions of 1988, 1993, and
1997 are much briefer). Reviews of various special aspects of the KAM theory [21, 31,92,
125,127] appeared recently. Works [10, 22, 81] contain an extensive bibliography.

All the Hamiltonian systems in the sequel will be assumed to be autonomous.
2. THE FIRST TOPIC: WEAK NONDEGENERACY

Recall the set-up of original Kolmogorov’s theorem [67] of 1954. Consider a Hamiltonian

system with n > 2 degrees of freedom and the Hamilton function of the form

where the “action” variable I = (I3,...,I,) ranges over a bounded and connected open
domain D C R™ while the “angle” variable ¢ = (p1,...,¢,) ranges over the standard
n-torus T" = (R/27Z)"™. The symplectic structure is assumed to be dI A dp = dI; Adp; +
- -4dIl,Adyp,. The dynamics of the unperturbed system governed by the Hamilton function
H, is very simple: the whole phase space D x T" is smoothly foliated into invariant n-tori

{I = const}, and the motion on each torus {I = I'*} is determined by the equation
¢ =w(I*):=0Hy(I*)/0I.

One says that the system with the Hamilton function Hy (which is a function of I only) is
completely integrable. We will suppose that w(I) # 0 in D.

In the sequel, the following standard terms will be used. An invariant n-torus J of a
given flow is said to carry conditionally periodic motions if in some coordinates ¢ € T" on
this torus, the induced dynamics is afforded by the equation ng = const = w. For instance,
each invariant torus {I = const} of a completely integrable Hamiltonian system carries
conditionally periodic motions. The quantity w € R™ [defined uniquely up to an action
of GL(n,Z)] is called the frequency vector, and its components wy, ..., w, are called the
frequencies. If these frequencies are incommensurable (i.e., rationally independent), the
torus T in question is said to carry quasi-periodic motions.

How does a small p-dependent perturbation H; affect the completely integrable dy-

namics? H.Poincaré called this question the main problem of dynamics [104]. It did not



yield to the mathematicians’ efforts until Kolmogorov’s landmark note [67]. To put Kol-
mogorov’s result into a context suitable for the further discussion, introduce the following
fundamental definition [122].

Definition. A function H, is said to be KAM-stable if it possesses the following two
properties:

1) for any sufficiently small perturbation Hy, the corresponding perturbed system gov-
erned by (1) admits many invariant n-tori close to the unperturbed tori {I = const}, and
these tori carry quasi-periodic motions;

2) the Lebesgue measure of the complement to the union 'W of the perturbed tori vanishes

as the perturbation magnitude tends to zero.

As far as the author knows, the term “KAM-stable” was first used by S.B.Kuksin [72]
in 1992 [in a more general context of unperturbed Hamiltonian systems of the form (18)
(see Section 6 below)].

Kolmogorov’s famous theorem [67] of 1954 asserts essentially that in the analytic cate-
gory (i.e., if both Hy and H; are analytic and the smallness of H; is understood in the real
analytic topology), the following condition is sufficient for the KAM-stability of Hy:
0?H,

oI?

This condition called the Kolmogorov nondegeneracy means that the unperturbed fre-

det,

0
= det 8—(}) # 0 everywhere in D. (2)

quency map I — w([) is a local diffeomorphism of D. Another condition on Hy guaran-
teeing KAM-stability is the so called isoenergetic nondegeneracy [3,4]:

O2Hy/0I? OHy I\ . . (0w/dl w .
det ( OH, /0T 0 = det " 0 # 0 everywhere in D. (3)

This condition means that the map
I (wi(I):wy(D):...:w,(1)) € RP*

is a local diffeomorphism of each unperturbed energy level hypersurface {Hy(I) = const}
in D. For isoenergetically nondegenerate Hy, perturbed systems with the Hamilton func-
tions (1) admit many invariant tori on each energy level hypersurface {H (I, @) = const} in
D x T" [3,4]. The two conditions (2) and (3) are independent, i.e., there are Kolmogorov
nondegenerate functions Hy for which the determinant (3) (called sometimes the Arnol'd
determinant [22,82]) is identically zero, and there are isoenergetically nondegenerate func-
tions Hy for which the determinant (2) (the Hessian of Hy) is identically zero. Explicit
examples for any n are presented in, e.g., [22,132]. Both the Kolmogorov and isoenergetic
nondegeneracy conditions can be interpreted in terms of the Lie algebras of the symmetries
of the unperturbed system [14-16].



The analyticity requirement in Kolmogorov’s theorem can be relaxed greatly, namely,
it can be replaced by C"-smoothness of H for r < oo sufficiently large [89,91,93,108, 109,
117]. The best result here known by now is that any r greater than 2n is enough [91, 108].
To be more precise, J. Moser [91] and J.P&schel [108] proved the KAM-stability of Hy
(under the Kolmogorov nondegeneracy condition) for analytic Hy and C"-smooth H; for
any r > 2n, while D. Salamon [117] showed that one can allow Hy to be C"-smooth as well.
Note that r here is not necessarily an integer, and C"-smoothness is to be understood here
and henceforth in the Holder sense for non-integer r.

What is much more important for us is that the nondegeneracy condition (2) in Kol-
mogorov’s theorem can be relaxed greatly as well. The ultimate result here (essentially
due to H. Riissmann [115,116]) is as follows:

Theorem 1. For analytic Hy, the following condition is necessary and sufficient for KAM-
stability: the image w(D) C R™ of the unperturbed frequency map w: D — R™ does not lie
i any hyperplane passing through the origin.

This condition called the Rissmann nondegeneracy is very weak: for example, the image
w(D) of an unperturbed frequency map w nondegenerate in the sense of Riissmann can be

a smooth submanifold of R of any prescribed dimension s from 1 to n.

Example. For n = s one may choose Hy to be an arbitrary Kolmogorov nondegenerate

function (e.g., a nondegenerate quadratic form of I). For 1 < s < n — 1, denote by

u=wu(ly...,I_s11) the solution of the equation
n—s+1
Z (i — Du'"?L; =u
i=2
that is defined and analytic in Is,..., I, ;.1 near the point I, = --- =1, ,.; = 0 and

vanishes at that point. The local existence and uniqueness of such a solution are ensured
by the Implicit Function Theorem. One has u(/l5,0,...,0) = I. Consider the Hamilton
function ,
P n
Ho(I) =1, +/ w(@, Iy, Inosi)do+ 5 > I (4)
0 i=n—s+2

(domain D here is a neighbourhood of the origin). Since

ou (i — 1)u'? _ L 0u  O(uh)
a7 — P R ; - =(i—1u'" o =
oL 1 =320 (5 — 1)( — 2)ui=31; 0l 0l

=3

for each 2 <i<n—s+1and u =0 for I, =0, one sees that

_OHo(I) [ (u(lay ... Ly sq))™ for 1<i<n—s+1

w; (1) o, | L for n—s+2<i<n. ()




Thus, the Hamilton function (4) is Riissmann nondegenerate and the image of its frequency

map is of dimension s.

This example (for the particular case of s = 1, n = 3) was first presented in [25]. The
case of s = 1 and arbitrary n was considered in [123]. A similar example (for any s and n)
is contained in [22,122].

As far as the sufficiency of the Riissmann nondegeneracy condition is concerned, ana-
lyticity of Hy cannot be relaxed to C'*-smoothness (see below). For the necessity of the
Riissmann nondegeneracy condition, on the other hand, analyticity is not important at
all. If the unperturbed Hamilton function Hy (of any smoothness class) does not meet
the Riissmann condition then there are arbitrarily small perturbations H; (of the same
smoothness class) that remove all the invariant n-tori of the unperturbed system [22,122].
The corresponding perturbed systems admit no invariant n-tori (not just no invariant tori

carrying quasi-periodic motions but no invariant tori at all).

Example [22,122]. Let (v,w(I)) = 0 for some vector v € R” \ {0} (here and henceforth,
(-,-) denotes the standard inner product in RY). One can choose a matrix A € GL(n, R)
arbitrarily close to the identity n x n matrix in such a way that the vector Av will be

proportional to an integer vector k € Z" \ {0}. Now set
HI(I,(,O) :HO(A_II)_HO(I)+€COS<I€790> (6)

with e € R\ {0} arbitrarily small. Of course, this function H; is defined in (DN AD) x T"
rather than in D x T™, but this is of no importance if one uses the precise definition of
KAM-stability [122] we would not like to dwell upon here (this definition takes care of the
behaviour of the systems near the boundary of D). Denote OHy(A™'T)/dI by w(I), then
(Av,0(I)) = (v,w(A™T)) whence (k,&o(I)) = 0. The Hamilton function H = H, + H,

determines the equations of motion
I = eksin(k, @), o =w(I). (7)

One has d(k,¢)/dt = (k,&(I)) = 0. Consequently, I is an integral of motion, and if
sin(k, p(0)) = ¢ # 0 then I(t) = I(0) + ectk. Thus, system (7) has no compact invariant
manifolds containing points (I, ¢) with sin(k, ¢) # 0. On the other hand, function H; (6)
can be made arbitrarily small: of course, the length of vector k, generally speaking, tends

to infinity as Av tends to v but we can paralyse this by a suitable choice of e.

Although this argument is very simple, the necessity of the Riissmann nondegeneracy for
KAM-stability was first observed, as far as the author knows, no earlier than in 1995 [122].
Thus, for analytic functions Hj, one has the following alternative. If the image of the

gradient map w = 0H,/0I does not lie in any hyperplane passing through the origin
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of the frequency space, then any Hamiltonian system sufficiently close to the completely
integrable system with Hamilton function Hy admits many invariant n-tori carrying quasi-
periodic motions. In fact, perturbations here are allowed to be no smoother than C" (with
r large enough). On the other hand, if the image of w lies in a hyperplane of R" passing
through the origin, then there are analytic Hamiltonian systems arbitrarily close to the
completely integrable system with Hamilton function H, that possess no invariant n-tori
at all.

For highly degenerate functions Hj, one can achieve even more. Suppose that Hy is lin-
ear: Hy(I) = w1 +woly+- - -+ wyl,, so that w(l) = (@, @y, ..., w,) = const. A.B.Ka-
tok [65,66] showed in 1969-73 for certain domains D that for linear H, with positive w;
the following holds. For any r < oo there exist C*°-perturbations H; arbitrarily small in
the C"-topology and such that the Hamiltonian system with the Hamilton function H (1)
is ergodic on each energy level hypersurface (after an appropriate compactification of the
phase space).

A minor modification of example (6)—(7) enables one to explain why analyticity of Hy is
essential for the sufficiency of the Riissmann nondegeneracy condition. Let D; C D be an
open subset of D such that the interior of D\ Dy is not empty. It is very easy to construct
a Riissmann nondegenerate C'*°-function Hy: D — R whose restriction to D; is degenerate
in the sense of Riissmann. Such a function will not be KAM-stable.

The history of the proof of the “hard” part of Theorem 1 (that Riissmann nonde-
generate analytic functions H, are KAM-stable) is rather dramatic, this statement was
proven independently five times during a decade. The first proof was given by H. Riiss-
mann himself in the mid eighties, presented by him in a number of talks (e.g., in the
well-known talk “On twist-Hamiltonians” at the Colloque international: Mécanique céleste
et systémes hamiltoniens in Marseille in 1990) and announced in [115]. A detailed written
account of the proof, however, appeared no earlier than in a 1998 Johannes Gutenberg-
Universitdt preprint (Mainz) which was published in 2001 [116]. In fact, memoir [116]
(as well as notes [115]) treats not only the context of Kolmogorov’s theorem but also the
more general context of unperturbed Hamiltonian systems of the form (18) (see Section 6
below). Another proof was found by M.R.Herman and presented in his talk at an in-
ternational conference on dynamical systems in Lyons in 1990 but (as far as the author
knows) has remained unpublished. The first published proof appeared in 1994 in a paper
by Ch.-Q.Cheng and Y.-S.Sun [27]. Other sources are a 1994 ETH-Ziirich preprint by
J.Xu, J.You, and Q. Qiu (some extract from this preprint without a proof was published
in 1997 [147]) and M. B. Sevryuk’s papers [122,123] of 1995-96 (see also [128]). The proofs
by Herman and Sevryuk are similar and differ drastically from other proofs (see surveys
[21, 22]).



Interesting topological conditions (in terms of the so called topological Conley index) for
the presence of invariant n-tori in nearly integrable Hamiltonian systems with n degrees of
freedom were found by P.I.Plotnikov [103]. His results imply, in particular, the existence
of invariant tori under rather weak nondegeneracy conditions on Hy (close to the Riissmann
nondegeneracy).

Let F': Hy(D) — R be a smooth function whose derivative vanishes nowhere in the
interval Ho(D). The Hamiltonian flows governed by the Hamilton functions H (1) and
F(H) coincide up to a reparametrisation. The problems of looking for invariant tori in these
two Hamiltonian systems are therefore equivalent. It is sometimes useful to consider the
unperturbed Hamilton function F o Hy with suitable F' instead of Hy. If 0Hy(I)/0I = w(I)
then OF (Ho(I))/0I = F'(Hy(I))w(I). Consequently, F'o Hy is isoenergetically (Riissmann)
nondegenerate if and only if Hj is isoenergetically (respectively Riissmann) nondegenerate.
On the other hand, F' o Hy can be Kolmogorov nondegenerate for Kolmogorov degenerate
Hj. For instance, set

HoD)=TL+3) It F(H) = (®)

=2

Then the Hessian of Hy is identically zero whereas the Hessian of F o Hy is equal to e®*o(D).
Note that Hy in (8) is isoenergetically nondegenerate and coincides with the function (4) for
s = n — 1. However, there are Riissmann nondegenerate completely integrable Hamilton
functions that cannot be reduced to Kolmogorov nondegenerate ones by this trick. For
example, consider the function Hy (4) for n > 3 and any 1 < s < n — 2. This function is
nondegenerate in the sense of Riissmann and the image of its frequency map (5) is a smooth
submanifold of the frequency space of codimension n — s > 2. Both the determinants (2)
and (3) for this Hy are identically zero. The dimension of the image of the frequency map
of F'o Hy is no greater than s+ 1 for every F'. Consequently, the Hessian of F' o Hj is still
identically zero for any choice of F'.

By the way, consider a Hamilton function of the form Hy(I) = F(wl; + waly + - - +
wply,). Forsuch a function, Katok’s constructions [65, 66] mentioned above are still applied
while its frequency map w is, generally speaking, no longer a constant (although it is a
constant on each unperturbed energy level hypersurface { Hy(I) = const}).

Although the Riissmann nondegeneracy condition implies KAM-stability for analytic
unperturbed Hamilton functions only, it admits smooth analogues. Namely, the following
condition guarantees the KAM-stability of a C*°-function H, [122,123]: for every I € D,
there is a positive integer N = N(I) such that the collection of the (n 4+ N)!/(n!N!) partial

derivatives

o1*lw(I)

ETCER acZy, 0<|a <N, 9)



span R” [i.e., the linear hull of the vectors (9) coincides with R"]. Here Z, denotes the set
of non-negative integers and |a| := a1 + - - - + .

For analytic maps w, this condition is equivalent to the Riissmann nondegeneracy (and
is therefore also necessary for KAM-stability). But for C*°-maps w, this condition is much
stronger than the Riissmann nondegeneracy. Note that the Kolmogorov nondegeneracy
condition (2) is tantamount to that for every I € D, the collection of the n partial deriva-
tives 01%w(I)/0I* with |a] = 1 span R". The isoenergetic nondegeneracy condition (3)
implies that for every I € D, the collection of the n + 1 partial derivatives 01*w(I)/0I®
with 0 < |a] < 1 span R™.

For any number r < oo large enough, there is an integer ¥ = F(r) < |r] — 1 such that
the following condition guarantees the KAM-stability of a C"-function Hy [122,123]: for
every I € D, the collection of the partial derivatives (9) with N = & span R". Here |r|
denotes the integer part of r, and F(r) — oo monotonously as r — oo.

The “optimal” (simultaneously sufficient and necessary) conditions of KAM-stability in
the C"-categories (r < co) are not known yet.

There are two main differences in the behaviour of Hamiltonian systems close to Kol-
mogorov (or isoenergetically) nondegenerate completely integrable ones and the behaviour
of those close to general Riissmann nondegenerate completely integrable ones. The first
difference pertains to the measure of the resonant set, i.e., the complement to the union W

of the perturbed tori. Suppose that the perturbation H; in (1) has the form
Hl([a ()0) :6h([7 ()078) (10)

where £ > 0 is a small parameter. If the unperturbed part Hy of the Hamilton function (1)
is Kolmogorov or isoenergetically nondegenerate, then the measure of the resonant set is

at most of the order of £!/2

in any smoothness category [94,109]. However, for general
Riissmann nondegenerate functions Hy, the measure of the resonant set can be larger. If
for some positive integer N the collection of partial derivatives (9) span R" for every I € D,
then the measure of the resonant set is at most of the order of £'/(?N) [122].

The second difference concerns the set of the perturbed frequency vectors. For Kol-
mogorov nondegenerate Hamilton functions Hj, the set of the frequency vectors of the
perturbed tori is essentially the same for all the sufficiently small perturbations H; and is
known “beforehand”. For isoenergetically nondegenerate Hamilton functions Hy, the same
is true for the set of the ratios of the frequencies of the perturbed tori on each energy level
hypersurface. The point is that the frequencies of the perturbed tori in the KAM theory
are not just incommensurable but strongly incommensurable (Diophantine), and families

constituted by these tori are therefore Cantor-type.

Definition. Let 7 > 0 and 7 > 0. A vector @ € R” is said to be (7, )-Diophantine if for
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each k € Z" \ {0} the inequality
(k)| = [k (11)
holds, where |k| := |ki| 4+ - - - + | kx|

For any fixed 7 > n — 1 and for any bounded open domain D C R", the relative
measure of the set of (7,v)-Diophantine vectors w € D tends to 1 as v — 0 [135]. For
some generalisations of the arithmetical condition (11) on the frequencies of quasi-periodic
motions see, e.g., [115,116].

Before formulating the second difference between Kolmogorov/isoenergetic nondegen-
eracy and Riissmann nondegeneracy, remark that for ¢-independent terms H; in (1), the
perturbed system is still completely integrable and its invariant n-tori {I = const} coincide
with the unperturbed n-tori (but have different frequencies). In fact, “generic” nearly inte-
grable Hamiltonian systems are not integrable (see [10,68,84,104] and references therein).

The second difference consists in the following. Let the unperturbed Hamilton function
Hj be Kolmogorov nondegenerate. Then, for any fixed 7 > 0 and v > 0, the perturbed sys-
tem with Hamilton function (1) possesses invariant n-tori with all the (7, vy)-Diophantine
frequency vectors w € w(D) not very close to the boundary dw(D), provided that the
perturbation H; is sufficiently small [3,4,67,94,109,117] (the “sufficient smallness” of H;
depends on 7 and 7). This is true in any smoothness category. For isoenergetically nonde-
generate unperturbed Hamilton functions Hj, an analogous statement holds for the ratios
() @ wy & ... : @,) € RP" ! of the components of (7,~)-Diophantine frequency vec-
tors @ € w(D) on each energy level hypersurface. On the other hand, one can choose a
Riissmann nondegenerate analytic function Hy possessing the following two properties:

1) there are arbitrarily small analytic p-independent perturbations H; for which the set
of the ratios of the unperturbed frequencies and the set of the ratios of the perturbed ones
are disjoint;

2) for each w € R™\{0}, there is an arbitrarily small analytic p-independent perturbation
H, for which the perturbed system has no invariant n-torus with frequency ratio (w; : ws :

CTO).

Example. Let n > 3 and consider function (4) for any 1 < s < n — 2. For this function,
wi(l) =1, wo(I) = u, and w3(I) = v? with u = u(ly, ..., I[,_si1) [see (5)]. Consequently,
for H,(I,p) = eI, the ratio of the first three frequencies of any n-torus {I = const} is
(1:u:u®+¢). For any € # 0, the set of the unperturbed frequency ratios and that of the
perturbed frequency ratios will be disjoint. Let now (z; : @y : ... : w,) be an arbitrary
point in RP™ 1. If @; = 0, then the set of the perturbed frequency ratios does not contain
this point for any . If w; # 0, then the set of the perturbed frequency ratios does not

contain this point for any ¢ # wsw, ' — wiw, °.
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Actually, in this example, the sets of the perturbed frequency ratios corresponding to
e = ¢, and to € = g9 are disjoint whenener £, # ¢4 (cf. [25]).

Thus, for a Riissmann nondegenerate completely integrable Hamiltonian system, one
may assert, generally speaking, just that for any sufficiently small Hamiltonian perturbation
of this system, the perturbed system admits many invariant tori close to the unperturbed
ones. The set of the frequency vectors of these perturbed tori and even the set of the
ratios of the perturbed frequencies depend on the perturbation and cannot be predicted
“beforehand”. One should not say that the unperturbed tori “survive” the perturbation
or “persist”.

It would be interesting to apply the KAM theory with weak nondegeneracy conditions
to the problems of planetary motions in celestial mechanics connected with the so called
“wild resonance” discovered by M. R.Herman in 1997 (see [1,10]).

The science surveyed in this section is straightforwardly carried over to Hamiltonian
systems with discrete time, i.e., exact symplectic diffeomorphisms, as explained in [22,122,
126] (of other works devoted—at least in part—to the discrete time Hamiltonian KAM
theory, one may mention [6,75-78,89,93,131,132,137]). The analogue of the Riissmann

nondegeneracy condition for completely integrable exact symplectic diffeomorphisms
(L) = (Lo +w()),  wl)=0H(I)/oI

is as follows: the image of the unperturbed frequency map w does not lie in any affine
hyperplane of the frequency space (in other words, the hyperplanes that do not pass through
the origin are forbidden as well). For analytic maps w, this condition is necessary and
sufficient for KAM-stability [122]. In the discrete time case, one should consider collections
of partial derivatives d1%w(I)/0I% [cf. (9)] with 1 < || < N instead of 0 < |a|] < N.
The definition of (7,v)-Diophantine vectors @ € R" in the discrete time case involves
inequalities
|(k, @) = 2mho| = ~[k| ™"

for any ko € Z, k = (ky,...,k,) € Z"\ {0} instead of (11), and the set of such vectors is
of full measure for any fixed 7 > n [135].

For some local versions of the theorems and examples reviewed above, see [65, 66, 126]
and references therein.

Theorem 1 is carried over mutatis mutandis to reversible [21,22,121,122], volume-

preserving [21,22], and dissipative [21,22] systems.

3. THE SECOND TOPIC: GEVREY SMOOTHNESS

For this topic, we will need two important concepts: Gevrey smoothness and Whitney

smoothness.
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Gevrey smoothness is a notion intermediate between C'*°-smoothness and analyticity.
Gevrey smooth functions are C'*°-functions with a moderate growth of the Taylor coeffi-

cients. The formal definition is as follows.

Definition. Let D C R” be an open domain. A function f: D — RY is said to belong to
the Gevrey class G* of index p (u > 1 is a real number) if f is C'°-smooth and for any
compact set X C D there exists a constant ¢ = ¢(X) > 0 such that

£ (1)

‘7‘ < c'o““(al!ag! CoaphP

ol
for each I € X and a € 7.

For the general theory of Gevrey smooth functions, see, e.g., [56]. Gevrey smooth
functions of index 1 are just analytic functions. That every analytic function is Gevrey
smooth of index 1 is obvious; the converse follows immediately from any explicit form of
the remainder in the Taylor formula. By the way, the statement that every Gevrey smooth
function of index 1 is analytic is a trivial particular case of the following deep and rather
hard theorem [69]: if the convergence radii of the Taylor series of a C'°-function at all the
points are bounded away from zero then this function is analytic. The one-dimensional
case (n = 1) of this theorem is called the Pringsheim-Boas theorem [12,13,69].

For any p > 1, however, the space G* of Gevrey smooth functions of index y contains
nonzero functions vanishing on some set with non-empty interior and, in particular, nonzero

functions with compact support. For 1 < py < ps, one has
A=G'c G" c G" c C™,

where A denotes the class of analytic functions D — RY. All the inclusions here are strict.
The space of Gevrey smooth functions is “negligible” (in the sense to be made precise) in
the space of all the C'°-functions [26], but it is still “rich” enough for many applications
(see, e.g., [56,69,118]).

Gevrey-type functions and asymptotic expansions are widely used in the theory of dy-
namical systems (see, e.g., [82] and references therein).

Whitney smoothness is a concept of entirely different nature. Whereas Gevrey smooth-
ness refers to the smoothness degree, Whitney smoothness refers to the regularity: it means
the possibility of a smooth interpolation. We will give here an informal definition of a
Whitney smooth family of invariant tori of a dynamical system (for the precise definition,
see [21,22,121]). The general theory of Whitney smoothness (far from being confined to
families of invariant tori) is expounded in, e.g., [56,69].

Consider a dynamical system with phase space M. Suppose that this system has a family
{Te € M} of invariant n-tori labelled by index £ € = C R? and carrying conditionally
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periodic motions with frequency vectors w, € R". It is assumed that = is a set of positive
measure. The structure of = can be “bad” (e.g., = may be Cantor-like). Each torus T is
the image of an embedding T” — M.

Let € be any smoothness class (C" with r < oo, C*, or G* with u > 1) admitting

nonzero functions with compact support.

Definition. The family {T¢}¢c= is said to be Whitney smooth of smoothness class € if
there are an open set B such that = C B C R? and an embedding U: T" x B - M
C-smooth in £ € B and such that for each £ € =

a) U(T", &) =T,

b) the pullback dynamics on T" x {£} is given by the vector field (wg, 0).

So, invariant n-tori T¢ with £ € = can be C-smoothly “interpolated” by the sets ¥(T", &)
with &€ € (B\ Z). In most the cases, these sets are also n-tori but not necessarily invariant.

It turns out that Cantor-type families of invariant tori in dynamical systems carrying
quasi-periodic motions with Diophantine frequencies are always Whitney smooth (at least,
no counterexample is known and in almost all the settings, Whitney smoothness has been
proven). This refers not only to invariant n-tori in Hamiltonian systems with n degrees of
freedom but also to invariant tori of other dimensions and invariant tori of systems which
are not Hamiltonian. Whitney smoothness of families of invariant tori was discovered by
V.F.Lazutkin [75,76] for the case of invariant curves of finitely smooth area-preserving
mappings of an annulus and was then extensively studied by many authors in various
situations, important subsequent references are [19-22,32,60,70,71,77,78,105-107, 109,
121,131, 137].

Consider a Hamiltonian system with n > 2 degrees of freedom and the Hamilton func-
tion H of the form (1). Suppose that the unperturbed Hamilton function H, is analytic
and Kolmogorov nondegenerate [i.e., that it meets condition (2)]. J.Pdschel [109] proved
that, depending on how smooth H; (and, consequently, H) is, the smoothness class of an
individual perturbed invariant n-torus and the Whitney smoothness class of the family of

the perturbed tori are as follows:

H a perturbed torus the family of tori
Cr,3n—1<r<oo|Cr anyr <r—2n+1|C" any 7" < (r—2n+1)/n
c c c
A A Ce°

Note that the Whitney smoothness of the family of the perturbed tori is never higher

than the smoothness of individual tori.
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We would like to comment the C”-case here. As a matter of fact, Poschel [109] showed

the following. Let 7, A, and 8 be some numbers subject to the inequalities
T>n—1, A>7+1, [B>1, (12)

and
B #i\""+ 4 for any integers i, j > 0. (13)

Then, if the unperturbed Hamilton function Hj is analytic and Kolmogorov nondegenerate
and a perturbation H; is C#*** 7 _smooth, then each perturbed invariant n-torus with the
(1,7)-Diophantine frequency vector (for suitable v > 0 dependent on the perturbation
magnitude) is C**-smooth while the family of such tori is C’-smooth in the sense of
Whitney. Now the data pointed out in the table above for the finite differentiable case is
implied by the following simple lemma. Let 7, A\, and § satisfy (12) and let SA+A+7 =7,
BA=7', B =1r". Then

r>3n—1, r<r—2n+1, " <(r—2n+1)/n. (14)

Conversely, let r, ', and " be positive numbers satisfying (14). Then there exist numbers
7, A, and 8 meeting (12)—(13) and such that r = A+ A+ 7, 7' < A, " < 5.

However, the case most interesting for us now is the case of analytic perturbations H;. If
the Hamilton function H is analytic then each individual perturbed n-torus is also analytic
and the family of these tori is infinitely differentiable (in the sense of Whitney). Pdschel
noted in [109] (cf. also [10]) that “this is probably the most one can hope to get”. Indeed,
the family of the perturbed tori is generically not analytic, otherwise this family would be
continuous rather than Cantor-type and the perturbed system would be still completely
integrable.

Nevertheless, very recently, G.S.Popov announced in [105] and showed in [106] that
one does get more. Namely, he proved that if both Hy and H; are analytic and Hj is
Kolmogorov nondegenerate, then the family of the perturbed tori is not just infinitely
differentiable in the sense of Whitney but Gevrey smooth in the sense of Whitney. To be

more precise, the last line of the table above should be corrected as follows:

H | a perturbed torus the family of tori
A A G*", any p > max(9/2,n+1)

As a matter of fact, Popov [106] showed that for every number 7 > n — 1, the family
of the perturbed n-tori with (7,~)-Diophantine frequency vectors (for suitable v > 0 de-
pendent on the perturbation magnitude) is G#-smooth in the sense of Whitney for any
p > max(9/2, 7 + 2).
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Thus, the families of invariant n-tori of analytic Hamiltonian systems with n degrees
of freedom turn out to be much smoother (in the sense of Whitney) than one thought
before. Gevrey smoothness of those families is important for semiclassical asymptotics of
eigenvalues and eigenfunctions of Schrodinger-type operators [105-107] (for the previous
results on the connection between invariant tori in classical Hamiltonian systems and short
wave approximations of the corresponding quantum systems, see [77,78] and references
therein).

It would be interesting to examine the smoothness of the perturbed n-tori and the
Whitney smoothness of their family in the case where the perturbation is Gevrey smooth
(of some index p > 1). Conjecturally, individual perturbed tori will be Gevrey smooth of
some index g’ > p in this case, whereas the family of the tori will be Gevrey smooth of
some index p” > y' (in the sense of Whitney).

Actually, in the context of Kolmogorov’s theorem, a perturbed system not only admits
a Whitney smooth family of invariant n-tori but also is integrable (in a certain sense) on
the union of these tori. For precise formulations and the proofs of this fundamental result,
see [109].

4. THE THIRD TOPIC: “EXPONENTIAL CONDENSATION”

Consider again a Hamiltonian system with n > 2 degrees of freedom and the Hamilton
function H of the form (1). Suppose that both the unperturbed Hamilton function Hy and
its perturbation H; are analytic. Assume also that Hj is Kolmogorov nondegenerate [i.e.,
condition (2) is satisfied] and quasi-convez. The latter means that

<a(g([[)n, n> #0

whenever 7 € R* \ {0} and (n,w(I)) = 0. The concept of quasi-convex Hamilton functions

was introduced by N.N.Nekhoroshev [96]. Quasi-convexity of Hy means strict convexity
of the corresponding unperturbed energy level hypersurfaces {Hy(I) = const} C D. One
can easily verify that the conditions of Kolmogorov nondegeneracy and quasi-convexity are
independent [22] but quasi-convexity implies isoenergetic nondegeneracy [82]. In particular,
the Kolmogorov degenerate and isoenergetically nondegenerate Hamilton function (8) is
quasi-convex. For n = 2, quasi-convexity is equivalent to isoenergetic nondegeneracy
(82, 96].

Under the hypotheses of analyticity of Hy and H; together with Kolmogorov nonde-
generacy and quasi-convexity of Hy, A. Morbidelli and A. Giorgilli [86] proved in 1995 the

following.

Theorem 2. Let H; be fized and sufficiently small. Denote by W the union of the perturbed
invariant n-tori and let T be any fived perturbed torus. Then the measure of U,(T)\'W is
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at most of the order of exp(—c/p) as p — 0 where U,(T) is the p-neighbourhood of T in
the phase space and c is a certain constant. Moreover, if the frequency vector of torus T is
(1,7v)-Diophantine then all the trajectories starting at a distance p < p* from T (p* being

a certain constant) remain close to T for an exceedingly long time of the order of

)

One says that the perturbed tori “exponentially condense” to each of them [125] and
that the rate of moving away from each torus is superexponentially small with respect to
the distance from the torus (the tori are “superezponentially sticky”). For these results,
analyticity of the Hamilton function is very essential.

Every torus among the perturbed tori that “condense” to 7 is, in turn, a “condensation
point” of other perturbed tori, and so on. This hierarchy (not completely understood yet,
as far as the author knows) is described and discussed in papers [49, 87, 88].

The “exponential condensation” of invariant tori proven in [86] was confirmed numeri-
cally (for a model problem of area-preserving mappings of the plane) in [46, 79].

“Exponential condensation” of invariant n-tori near elliptic equilibria (i.e., equilibria
with nonzero purely imaginary eigenvalues) of analytic Hamiltonian systems with n degrees
of freedom was established by A. Delshams and P. Gutiérrez [41] in 1996 (see also [42]). Here
and henceforth, an eigenvalue of an equilibrium means an eigenvalue of the linearisation

of the corresponding vector field around this equilibrium.

5. THE FOURTH TOPIC: DESTRUCTION OF RESONANT TORI

This topic also concerns Hamiltonian systems with n > 2 degrees of freedom and the
Hamilton functions H of the form (1). If the unperturbed Hamilton function Hy meets
condition (2) (i.e., is Kolmogorov nondegenerate), then, as was explained at the end of
Section 2, all the unperturbed invariant n-tori {I = I'*} with Diophantine frequency vectors
w(I*) “survive” small perturbations H;. What is the “fate” of a torus {I = I*} in the
opposite case, where the frequencies wy (I*), wo(I*), ..., w,([*) are rationally dependent
(such tori {I = I*} are said to be resonant and are foliated into invariant tori of a smaller
dimension)? To be more precise, suppose that among the n components of the vector
w(I*) = w*, there are n — [ (1 <[ < n — 1) strongly incommensurable numbers

WL W W (15)

117 Wig) > ip—y

T Wiy -+, wy are rational combinations of num-

bers (15) (so that the frequencies of the torus {I = I*} satisfy [ independent resonance

whereas the remaining [ components w

relations). Then the following statement holds.

16



Theorem 3. Let Hy be Kolmogorov nondegenerate. Then for generic sufficiently small
perturbations Hy, the n-torus {I = I*} breaks up into a finite collection of invariant (n—1)-

tori carrying quasi-periodic motions.

We will not attach any exact meaning to the word “generic” here (precise formulations
of Theorem 3 can be found in [30,40,138,142]). Instead, let us note the following. Near
the torus {I = I*}, a certain averaging and truncation procedure described in detail in,

e.g., [10] reduces the Hamilton function (1) to

~

H(K, J,x) = (@ K)+H(J,x),  H(Lx)=5(AJ,J)+V(x),

where @* € R*~! is the vector with components (15), K € R*™!, J e R, x € T, Ais a
real symmetric [ x [ matrix (det A # 0), and |V| < 1. It turns out that generically to each
nondegenerate critical point x* of the function V', there “corresponds” (in the sense to be
made precise) an invariant (n — [)-torus (lying near {I = I*} and carrying quasi-periodic
motions) of the system with the Hamilton function (1). The word “nondegenerate” here
means that V()

det 73)@ # 0.

On the other hand, x* € T' is a nondegenerate critical point of the potential V if and only
if the point (0, x*) is a nondegenerate equilibrium of the Hamiltonian system with [ degrees
of freedom and the Hamilton function H (an equilibrium is said to be nondegenerate if
all its eigenvalues are other than zero). The symplectic structure here is assumed to be
dJ Ndx = dJy Ndxy + -+ dJ, Ady;. In fact, the eigenvalues of the equilibrium (0, x*)
are those of the 2/ x 2/ matrix

2 * 2

If ) is an eigenvalue of an equilibrium of a Hamiltonian system, so is —\. Thus, a nonde-
generate equilibrium of a Hamiltonian system can be elliptic (all the eigenvalues are purely
imaginary), hyperbolic (all the eigenvalues lie outside the imaginary axis), and of mized
type. According to the type of equilibria (0, x*) of the system with Hamilton function 3,
the corresponding invariant (n — [)-tori of the original system with Hamilton function H
are also said to be elliptic, hyperbolic, and of mized type. It turns out that the case of
hyperbolic (n — [)-tori in Theorem 3 is much easier than the case of nonhyperbolic tori
(i.e., elliptic tori and tori of mixed type).

In particular, suppose that the perturbation H; in (1) has the form (10). Then V(x) =
ev(x) + O(g?), and for every sufficiently small &€ > 0, the original system possesses a

hyperbolic invariant (n — [)-torus “emerging” from a given hyperbolic equilibrium (0, x*)

17



of the system with the Hamilton function

lim e Y (Y27, x) = L(AT, J) + v(x) (17)

e—0

(provided that h is generic). In the analytic category this torus depends on & analyti-
cally [138]. A nonhyperbolic equilibrium (0, x*) of the system with the Hamilton func-
tion (17) gives rise to a nonhyperbolic invariant (n — [)-torus of the original system only
for the most values (in the Lebesgue measure sense) of the perturbation parameter .

The case [ = n—1 of “maximal” resonance (where the tori in question are in fact circles)
in Theorem 3 was considered by H. Poincaré [104] (for a modern presentation see, e.g., [22]).
This classical result is outside the KAM theory because it does not involve “small divisors”.
The case of arbitrary | was proven no earlier than in 1989 by D.V.Treshchév [138] (see
also a discussion in [22,68]). But Treshchév treated only hyperbolic invariant (n — [)-
tori. The hyperbolic [ = 1 case was also examined independently in subsequent papers
[28,43,98,113,139,141]. In works [43,98,113,138,139], a special attention was paid to
the n-dimensional separatrix stable and unstable manifolds (“whiskers”) of the hyperbolic
invariant (n —[)-tori one looks for. Such “whiskers” are of great importance in the Arnol’d
diffusion mechanism. Nonhyperbolic invariant tori in Theorem 3 were first constructed by
Ch.-Q. Cheng [29] for the case [ = 1 (note that if / = 1 then the tori are either hyperbolic or
elliptic). The general case of Theorem 3—an arbitrary [ and arbitrary type of the invariant
(n — [)-tori—was announced by Cheng and Sh. Wang [30, 142]. In fact, Cheng and Wang
[30,142] considered only the case where the eigenvalues of matrix (16) are either real or
purely imaginary (quadruplets +a + bi of complex eigenvalues were excluded). Finally,
very recently, F. Cong, T. Kiipper, Y.Li, and J. You [40] proved Theorem 3 for arbitrary I
and arbitrary type of the invariant (n — [)-tori (and arbitrary collections of eigenvalues).
Thus, now we have got the complete picture of the destruction of resonant tori of integrable
Hamiltonian systems under small perturbations.

The papers [28,29,40,43,98,113,138,139,141] cited above studied the analytic situa-
tion whereas the articles [30,142] dealt with finitely smooth systems. Theorem 3 admits
reversible analogues [80, 144]. Papers [80, 144] consider an arbitrary number of resonance

relations and arbitrary type of the tori.
6. THE FIFTH TOPIC: EXCITATION OF ELLIPTIC NORMAL MODES

This topic pertains to a more complicated setting than before. Consider a Hamiltonian
system with n 4+ m degrees of freedom (n > 2, m > 1) and the Hamilton function of the

form
Ho(I,,2) = Ho(I) + 5(M(I, )z, 2) + O(|2]*) (18)
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where the variables I, ¢, and z range respectively over a bounded and connected open
domain D C R", the standard n-torus T%, and a neighbourhood of the origin in R*™, while
M(I,p) is a real symmetric 2m x 2m matrix for every I and . The symplectic structure

is supposed to be

D dlNdei+ Y dz Adzim. (19)
i=1 j=1

The Hamilton function (18) determines the equations of motion

I=0(2P), @e=wd)+0(2"), 2=Q(I,¢)z+0(z] (20)
where 5H 0 5
_ _0 _ m — Lm
W= Q= (Em 0. ) M, (21)

0,, denotes the zero m x m matrix, and E,, denotes the identity m x m matrix. Thus,
the 2n-dimensional surface {z = 0} is smoothly foliated into n-tori {z = 0, I = const}
invariant under the flow of the system governed by the Hamilton function (18), and these
tori carry conditionally periodic motions with frequency vectors w(I). The restriction of
the system to the surface {z = 0} is still Hamiltonian (with respect to the symplectic
structure dI A dp) and completely integrable.

As soon as one proceeds to small Hamiltonian perturbations of the Hamilton func-

tion (18), two problems arise.

The first problem: the existence of invariant n-tori (carrying quasi-periodic motions)

near the surface {z = 0} in perturbed systems.

This problem has been addressed in very many works starting with V. K. Mel'nikov’s
article [85] of 1965. An extensive bibliography is presented in [10,22], these two books
contain also detailed reviews of the results obtained. Of the most recent papers, one can
mention [17,36,39,57,114, 116,128,148, 151] (see also the mini-survey [143]). It turns out
that invariant n-tori in a perturbed system do exist under rather general conditions. To

be more precise, the following statement is valid.

Theorem 4. Assume that at least one of the following two hypotheses holds:
a) for every I and ¢, the matriz Q(I, ) [see (21)] has no purely imaginary eigenvalues,
b) the matriz M (and, consequently, Q1) does not depend on ¢.
Suppose also that the functions w and € satisfy certain nondegeneracy and nonresonance
conditions. Then any Hamiltonian system with the Hamilton function sufficiently close
to Hy (18) admits many invariant n-tori which are close to the unperturbed n-tori {z =
0, I = const} and carry quasi-periodic motions. The Lebesque measure of the complement

to the union of the images of the perturbed tori under the projection w: (I, p, z) — (I, p,0)
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onto the surface {z = 0} wvanishes as the perturbation magnitude tends to zero. If the
hypothesis a) is valid then each perturbed n-torus is attached (n+m)-dimensional separatriz

stable and unstable manifolds ( “whiskers”).

The numerous versions of Theorem 4 differ mainly in the set of nondegeneracy and non-
resonance conditions to be imposed on the unperturbed Hamilton function (18). Of the
sources cited above, works [10,22,39,116, 128,148, 151] use Riissmann-like nondegeneracy
conditions on the map w (21). The “optimal” nondegeneracy and nonresonance condi-
tions on w and € (like the Riissmann nondegeneracy of analytic completely integrable
Hamiltonian systems) are not known yet even in the analytic category.

Now assume that the 2m x 2m matrix Q(I, p) = Q(I) is p-independent and possesses
k pairs of purely imaginary eigenvalues for every I (1 < k < m). These eigenvalues are
sometimes called the elliptic normal modes of the unperturbed tori {z = 0, I = const}

and yield the following problem.

The second problem: the existence of invariant (n + v)-tori (carrying quasi-periodic
motions) near the surface {z = 0} in the unperturbed system and perturbed systems for

each v, 1 <v < k.

If such tori exist one sometimes says that the elliptic normal modes of the unperturbed
n-tori {z =0, I = const} ezcite.

It turns out that under certain nondegeneracy and nonresonance conditions, invariant
tori of all the dimensions n + 1, n+ 2, ..., n + k do exist in the unperturbed system
as well as in perturbed systems. We will not formulate the corresponding theorem even
vaguely and will confine ourselves with relevant references. Up to now, the excitation of the
elliptic normal modes of the unperturbed n-tori has been explored for analytic Hamilto-
nian systems only (although it undoubtedly takes place for C*°- and finitely differentiable
systems as well). The first excitation results were obtained in 1962-63 by V.I. Arnol'd
[2,4] who considered the particular case v = £ = m. In 1974, A.D.Bruno [23] exam-
ined the general case of arbitrary x and v and constructed analytic families of invariant
(n + v)-tori (preprints [23] were translated into English as the second part of book [24]).
General theorems describing Whitney smooth Cantor-type families of invariant (n + v)-
tori (for arbitrary x and v) were proven independently by H. W. Broer, G. B. Huitema, and
M. B. Sevryuk in 1996-97 [22,124] and by A. Jorba and J. Villanueva in 1997 [63, 140] (see
also [64]). Analytic families of tori found by Bruno are subfamilies of these Cantor-type
families. Jorba and Villanueva [63, 64, 140] also established the “exponential condensation”
of invariant (n + v)-tori (which, of course, does not take place in the C"-categories for any
r < 00). The “exponential condensation” of perturbed invariant n-tori in the context of

Theorem 4 was verified by Jorba and Villanueva in a separate paper [62]. Various versions
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of the excitation theorem have been surveyed in detail in review [125].

The phenomenon of the excitation of elliptic normal modes is also known in reversible
[22,112,119-121,127] and volume-preserving [129] set-ups. The works [22,119,121,127]
consider the excitation of elliptic normal modes in reversible flows and papers [112,120,

121], in reversible diffeomorphisms.
7. THE SIXTH TOPIC: “ATROPIC” INVARIANT TORI

This last topic concerns the most important, in the author’s opinion, and simultaneously
least understood results in the Hamiltonian KAM theory for the last five years. First of

all, recall the following definition.

Definition. Let M?" be a symplectic manifold of dimension 2N. A smooth n-dimensional
submanifold L™ of M is said to be isotropic (Lagrangian for n = N) if the tangent space
TpL to L at any point P € L lies in its skew-orthogonal complement: TpL C (TPL)C,
i.e., if the restriction of the symplectic structure to £ vanishes. A smooth n-dimensional
submanifold L™ of M is said to be coisotropic (Lagrangian for n = N) if the tangent space

TpL to L at any point P € L contains its skew-orthogonal complement: (TpL)¢ C TpL.

For instance, every point (n = 0) and curve (n = 1) in a symplectic manifold are
isotropic, and any hypersurface (n = 2N — 1) is coisotropic. Any symplectic manifold is
a coisotropic submanifold of itself (n = 2N). If L® C M?V is isotropic then n < N. If
L™ C M2V is coisotropic then n > N.

All the invariant tori of Hamiltonian systems we have spoken of by now are isotropic.
The reason is the following theorem due to M. R. Herman of 1988-89 [51, 52]:

Theorem 5. Any invariant torus of a Hamiltonian system carrying quasi-periodic motions

15 1sotropic provided that the symplectic structure is exact.

Proof. Let T be an invariant n-torus carrying quasi-periodic motions. In some coordinate
¢ € T™ on this torus, the induced dynamics is given by the equation ng = w where the
frequencies wy, ws, ..., @, are rationally independent. Since a Hamiltonian flow preserves

the symplectic structure, the flow ¢': ¢ — ¢ + tw preserves the restriction

Z filiz (d)) dd)ll N dgbzg
1<i1<i2<n
of the symplectic structure to J. This means that all the coefficients f;;, are constants
along the orbits of the flow g*. As any orbit of a quasi-periodic flow on a torus is everywhere
dense, each coefficient f;,;, is a constant on J. Now it suffices to note that the only exact

differential form on a torus with constant coefficients (of any degree) is zero. O
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In fact, Herman [51,52] proved Theorem 5 for a particular case of invariant n-tori of
symplectic diffeomorphisms of 2n-dimensional symplectic manifolds, but the general case
(verified in [22]) of invariant tori of arbitrary dimensions is not harder at all.

A certain version of the KAM theory can nevertheless be developed also for coisotropic
invariant tori of dimensions greater than the number of degrees of freedom. Of course,
the symplectic structure in this case should be nonexact. Moreover, it turns out that the
periods of the symplectic structure (its integrals over the two-dimensional cycles within
the tori in question) should satisfy certain Diophantine-like conditions: all the theorems
on coisotropic tori proven by now include such Diophantine hypotheses. The coisotropic
Hamiltonian KAM theory was founded by I. O. Parasyuk [99] in 1984, see also subsequent
papers [70, 71, 100-102] by Parasyuk and his co-worker A. A. Kubichka. Coisotropic invari-
ant n-tori of Hamiltonian systems with N < n degrees of freedom were also studied by
Herman [53,54] (see also [92,149,150]) and by F.Cong and Y. Li [38]. The papers [53, 54]
are devoted to the particular case n = 2N — 1.

In Parasyuk’s theory, one starts with an “unperturbed” Hamiltonian system with N > 2
degrees of freedom whose phase space is smoothly foliated into coisotropic invariant n-tori
carrying conditionally periodic motions (N +1 < n < 2N — 1). Then, as in Kolmogorov’s
setting, one can prove that, under certain conditions on the symplectic structure and the
unperturbed Hamilton function, perturbed systems still admit many coisotropic invariant
n-tori carrying quasi-periodic motions. The measure of the complement to the union of the
perturbed tori vanishes as the perturbation magnitude tends to zero. The symplectic struc-
ture here is usually supposed to be fixed, as in the “conventional” isotropic Hamiltonian
KAM theory. However, in their latest papers [71,102], Kubichka and Parasyuk considered
the case where the symplectic structure is perturbed as well (both the unperturbed and
perturbed structures being assumed to meet certain Diophantine conditions).

The most important application of the coisotropic Hamiltonian KAM theory is coun-
terexamples to the so called quasi-ergodic conjecture [10,22,92,149,150]. The ergodic
conjecture (to be more precise, one of the versions of this conjecture) says that a generic
Hamiltonian system is ergodic on (almost) every compact and connected energy level hy-
persurface. This conjecture is wrong [3,4,6,10,18,84,92,111, 149,150, 152]: a Hamilto-
nian system close to a KAM-stable completely integrable one does not possess such an
ergodic property. Moreover, a system sufficiently close to an isoenergetically nondegener-
ate completely integrable one admits many Lagrangian invariant tori on each energy level
hypersurface [3,4] and is therefore ergodic on no energy level hypersurfaces. The quasi-
ergodic conjecture says that on (almost) every compact and connected energy level hyper-
surface of a generic Hamiltonian system, there is an everywhere dense trajectory. For the

case of two degrees of freedom, this second conjecture is also wrong: the two-dimensional
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Lagrangian invariant tori divide the three-dimensional energy level hypersurfaces and ex-
clude everywhere dense trajectories. But M. R. Herman noticed (see [92,149, 150]) that for
some nonexact symplectic structures, the quasi-ergodic conjecture is wrong for the case of
N > 3 degrees of freedom as well: (2N — 2)-dimensional coisotropic invariant tori divide
the (2N — 1)-dimensional energy level hypersurfaces. Moreover, in both the cases, under
appropriate conditions, everywhere dense trajectories will occur on no energy level hyper-
surfaces. To the best of the author’s knowledge, whether the quasi-ergodic conjecture is
valid for N > 3 degrees of freedom and exact symplectic structures is still an open question.

Formulate now what may be called the Hamiltonian KAM paradigm: what families of
invariant tori carrying quasi-periodic motions can one expect to find in a typical Hamil-
tonian system with N > 1 degrees of freedom? The word “typical” here means that one
deals with Hamilton functions constituting an open set in the space of all the functions on
a given symplectic manifold (in other words, that the Hamiltonian systems we are studying

possess no additional symmetries). The answer is as follows [21,22,112].

Proposition 1. In a typical Hamiltonian system with N > 1 degrees of freedom, there
are n-parameter families of invariant isotropic n-tori for each 0 < n < N and, if N > 2
and the symplectic structure is not exact (and meets some Diophantine conditions), also
(2N — n)-parameter families of invariant coisotropic n-tori for each N +1 <n < 2N — 1.
Forn =0, 1, and 2N — 1 these families are smooth, otherwise they are Cantor-type and
Whitney smooth.

It was widely believed until 2000 that this paradigm embraces all the possible finite
dimensional Hamiltonian KAM statements (so that the tori in the Hamiltonian KAM
theory should be either isotropic or coisotropic, just as the tori treated in the reversible
KAM theory are invariant under the reversing involution). However, in 2000-01, Q. Huang,
F.Cong, and Y. Li [58,59] obtained some KAM-type results (in the analytic category) for
invariant tori that are neither isotropic nor coisotropic. We will call such tori “atropic”. Of
course, the symplectic structure in [58,59] is not exact. Taking into account the discovery

of Huang, Cong, and Li, Proposition 1 above can be supplemented as follows.

Proposition 2. In a typical Hamiltonian system with N > 3 degrees of freedom, there
are, if the symplectic structure is not exact (and meets some Diophantine conditions),
also p-parameter families of invariant “atropic” n-tori for each 3 < n < 2N — 3 and
1 <p<min(n — 2, 2N —n — 2) such that n + p is even. These families are Cantor-type
and most probably Whitney smooth.

Unfortunately, papers [58,59] contain serious inaccuracies (see [130]; in fact, the crit-
icism of [58] in review [130] applies mutatis mutandis to articles [38,59] as well). The

main idea of [58,59] is nevertheless correct: perturbing a system possessing an analytic
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(n 4+ p)-dimensional invariant surface IT§ *” smoothly foliated into invariant n-tori carrying
conditionally periodic motions and coisotropic (but not isotropic) within I1, (one assumes
that the restriction of the symplectic structure to I1y is a symplectic structure on I1p). In
the ambient phase space, these tori are “atropic”. Roughly speaking, Iy plays the role
of the surface {z = 0} in (18). In a perturbed system, one has to find invariant n-tori
carrying quasi-periodic motions and close to the unperturbed n-tori. Note that n and p in

this construction should satisfy the conditions
n > 3, 1<p<n-2 n + p is even, 2N >n+p+2

where N is the number of degrees of freedom. One easily sees that these conditions are

equivalent to the conditions pointed out in Proposition 2:
N > 3, 3<n<2N -3, 1 <p<min(n—2,2N —n —2), n + p is even.

We will conclude this section (and the whole survey) by discussing a method of the

reduction of some complicated KAM settings to simpler ones.

Theorem 6. Let (ﬁ, (:J) be a symplectic manifold and 11y C I a submanifold of L. Sup-

pose that the restriction wo = W, is a symplectic structure on Tly. Let also ﬁg: IR
be a Hamilton function on (ﬁ,&?) for which 1y is a normally hyperbolic invariant man-
ifold of the corresponding Hamiltonian system. Assume also that the restriction Hy =
ﬁI0|HO: [Ty — R behaves as an unperturbed Hamilton function in a certain KAM-type the-
orem, for the symplectic manifold (Ily, wy). Namely, Ty is smoothly foliated into invariant
n-tori of the Hamiltonian flow on Ilg with the Hamilton function Hy, and any Hamilto-
nian system on (Ily,wo) with the Hamilton function sufficiently close to Hy admits many

wmwvariant n-tori close to the unperturbed ones. Then any Hamiltonian system on (ﬁ,&:)

with the Hamilton function sufficiently close to I:IO admits many invariant n-tori close to

the unperturbed n-tori on Ilj.

Sketch of a proof. Let H:1II - R be a Hamilton function close to ﬁ[o. According to the
general theory of normally hyperbolic invariant manifolds [45,55,146], the Hamiltonian
system on (ﬁ,ﬁ:) with the Hamilton function H possesses an invariant manifold II close
to ITp. The restriction w = w| is a symplectic structure on I1. Denote by H the restriction
H = I:T|H: IT — R. So, we have the unperturbed objects

<ﬁ,&37ﬁ0) ) (H07w07H0)

and the perturbed ones
(ﬁ,a, ff) . (IL,w, H).

24



The main idea of the proof is to verify that the Hamiltonian system on (IT,w) with the
Hamilton function H admits many invariant n-tori close to the unperturbed n-tori on IIj.
This does not follow directly from the hypothesis of the theorem because II # II, and
w # woy.

Consider a diffecomorphism «: [Ty — II close to the identity mapping ¢: [Ty — I (the
closeness of a and ¢ is to be understood as that of two embeddings I, — ﬁ) Then a*w is a
symplectic structure on Il close to wo and H o« is a function on Il close to Hy. Actually,

wo and a*w are also of the same cohomology class. Indeed, let I' be any two-dimensional

frafue = [ o

We have used here the fact that I' and (") are close and, consequently, homologous to

cycle in IIj, then

each other in II. Now we need the following lemma (essentially due to J. Moser [90], for

more recent presentations see, e.g., [133,145]):

Lemma. Let wy and w; be two close symplectic structures of the same cohomology class
on a certain manifold 1ly. Then there is a diffeomorphism §: 11y — Il close to the identity

transformation and such that f*wi = wy.

This lemma (which will be discussed below) provides us with a diffeomorphism 3: [T, —
[Ty close to the identity transformation and such that f*a*w = wqy. It suffices finally
to apply the hypothesis of the theorem to the Hamiltonian system on (Ily,wg) with the

Hamilton function H o v o 3. OJ

Of course, the power of the reduction approach described in Theorem 6 is rather limited.
First of all, this approach applies to normally hyperbolic manifolds I only, but at the same
time gives no tools to watch over separatrix stable and unstable manifolds (“whiskers”)
of the perturbed tori. What is more serious is that the perturbed normally hyperbolic
invariant manifolds are, generally speaking, finitely smooth only even in the analytic and
C'>-categories [45, 55,136, 146]. Consequently, even if all the “input” objects (ﬁ, Iy, w,
Hy, and H) in Theorem 6 are analytic (C*) and the perturbed invariant tori will most
probably be analytic (respectively C*°) as well, the surface IT containing these tori will be
in general finitely differentiable only, and the proof of Theorem 6 outlined above enables

one to establish only finite smoothness of the perturbed tori.

Example 1 is the context of Theorem 4 in Section 6. Here I is the phase space for the
Hamiltonian system with the Hamilton function Hy (18), @ is the symplectic structure (19),
[T, is the surface {z = 0}, and wy = dI A dp. The surface IIy considered as an invariant
manifold of system (20) is normally hyperbolic if and only if for every I and ¢, the matrix
Q(I, ) [see (21)] has no purely imaginary eigenvalues. If this hyperbolicity condition is
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met and the function Hy in (18) is KAM-stable in the sense of Section 2, we immediately

arrive at the conclusion of Theorem 4.

That one can obtain this way invariant n-tori in the framework of Theorem 4 “gratis”
was realised long ago [50] (see also [22] for a recent discussion). However, due to the reasons
pointed out above, various versions of Theorem 4 are usually proven in the literature by
entirely different methods. The author is aware of the only paper [57] where some particular
case of Theorem 4 was established by an argument of the same kind as that of Theorem 6
(however, see also a discussion in [17]). On the other hand, Theorem 6 above in its full
generality seems to be new.

Now construct “atropic” invariant tori in typical Hamiltonian systems with the help of

Theorem 6.

Example 2. Let a symplectic manifold (IIy,wq) and a function Hy: Ilj — R determine
an unperturbed Hamiltonian system in the Parasyuk theory [99]. In other words, suppose
that IIy is smoothly foliated into coisotropic invariant n-tori (of codimension p < n) of
the Hamiltonian system with the Hamilton function Hy, and that any close Hamiltonian
system on (Ily, wy) admits many invariant n-tori close to the unperturbed ones. Of course,
the symplectic structure wy is not exact and n+ p is even. For an arbitrary integer m > 1,
consider the manifold
IT = I, x O(0),

where O(0) is a neighbourhood of the origin in R*™. Equip II with the symplectic structure

m
w="r"'wy+ Z dzj N dzjim
i=1
where (21,2, ..., z2m) are the coordinates in ©(0) € R*™ and m: Il — II, is the natural

projection. On ﬁ, consider an arbitrary function of the form
Hy(¢,2) = Ho(Q) + 5(M(Q)z,2) + O(|2I)

where ((i, (s, - - ., Catp) are the coordinates in Iy, while M (() for every ( is a real symmetric
2m x 2m matrix such that the matrix Q(¢) defined by (21) has no purely imaginary
eigenvalues. Then I x {0} is a normally hyperbolic invariant manifold of the Hamiltonian
system on Il with the Hamilton function ﬁo, and the restrictions of w and f[o to this
manifold coincide respectively with wy and Hy. Now Theorem 6 guarantees that any
Hamiltonian system on (ﬁ, CJ) with a Hamilton function close to f[o admits many invariant

n-tori close to the unperturbed n-tori on IIy x {0}. These tori will be “atropic”.

In original papers [58,59], the existence of “atropic” tori was proven by completely

different methods. However, the argument of Example 2 shows that Proposition 2 above
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is valid indeed (at least in the finitely smooth category) independently of the errors in
[58, 59].

Now return to Lemma in the proof of Theorem 6.

Sketch of a proof of the Lemma. Since the symplectic structures wy and w; are close and
of the same cohomology class, their difference wy, — w; is small and exact. Hence, in Il

there is a small 1-form o such that
wy — w; = do. (22)
Consider the family of 2-forms
w; = (1 — t)wy + twy, 0<t<l1.

Since the forms wy and w; are close and nondegenerate, the form w; is nondegenerate for
each ¢. Consequently, for each ¢, the equality i,,w; = o defines a vector field v, on Il
which is small with o [recall that this equality means that w;(v;, §) = o(&) for any vector
field £ on IIy]. Denote by gf the phase flow map of the nonautonomous vector field v for
the time interval from 0 to ¢. It is not hard to verify (see [90,133,145]) that (g§)*w; = wy
for each ¢, 0 < ¢t < 1. Thus, 3 = ¢} is the desired diffeomorphism of TIj. It is close to the

identity transformation because v; are small. 0]

There are two delicate points in this proof. The first one is that I, in our situation is
not compact. In fact, this difficulty arises throughout the proof of Theorem 6. However, all
the troubles connected with the noncompactness of IIy are of purely technical nature and
can be dealt with rather easily. The second point is more fundamental: why, after all, can
the form o be chosen to be small? This question is addressed neither in Moser’s original
paper [90] nor in subsequent works I know (e.g., [133,145], actually, all those works contain
somewhat different versions of the Lemma). Note that, again, we omit all the technical
issues here, in particular, we do not point out in what smoothness class the smallness of
all the objects involved is to be understood. In the context of Theorem 6, Il is always
diffeomorphic to T" x RP for some p. For such I, the 1-forms o satisfying condition (22)
may be explicitly expressed in terms of wg—w;, and one can easily see that o can be chosen
to be small indeed. But, as a matter of fact, under rather general conditions, for any small
exact differential form A (of any degree) on a smooth manifold M, a form A subject to
the equality dA = A can be chosen to be small with A. I am grateful to M. A. Shubin
who has explained to me that this statement follows from the theory of pseudodifferential

operators.
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