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Most analytic differential equations do have irregular singularities.

The point at infinity: often an irregular singularity (also for the Painlevé equations).

Let x = ∞ be an irregular sing. of y′ = f(x,y) (x ∈ C, y, f ∈ Cd).

Algorithmic procedures ; a rank 1 irregular singularity ;

Normal form: y′ +
(

Λ− 1
x
A

)
y = g(x−1,y)

If Λ, A are diagonalizable, then

Λ = diag(λ1, . . . λd), A = diag(α1, . . . αd)

Also: g analytic at (0,0), with g(x−1,y) = O(x−2) + O(|y|2)
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Solutions y → 0 as x →∞ have a unique asymptotic power series:

y ∼ ŷ0 ≡
+∞∑
n

x−n y0,n (usually divergent)

Example: linear, d = 1 (the simplest!) y′ + y = x−1

Unique formal solution: y(x) → 0 as x → +∞ =⇒ y ∼ ŷ0(x) =
∑
n≥0

n!x−n−1

Exact solution: y = y(x;C) = y0(x) + Ce−x where

y0(x) = e−xEi(x) ∼ ŷ0(x) as x → +∞ and C = parameter.

; complete formal solution: ŷ = ŷ(x;C) =
∑

n≥0 n!x−n−1 + Ce−x.
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Complete formal solution: ŷ = ŷ(x;C) =
∑

n≥0 n!x−n−1 + Ce−x. (*)

It is not a Poincaré asymptotic expansion on R+

(since e−x � x−n−1 for all n: e−x is beyond all orders of the power series.)

An expansion (*) is a (simple example of) a transseries for x →∞.

Note: a transseries depends on the direction toward ∞ in C.

E.g. (*) is for x → +∞. In fact for x →∞ in the sector | arg x| < π
2 .

For x →∞ in the sector 3π
2 < arg x < 5π

2 we write Ce−x +
∑

n≥0 n!x−n−1
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In d = 1:

Linear eq. y′ + y = x−1

formal sol.: ŷ = ŷ(x;C) = ŷ0(x) + Ce−x where ŷ0 is a divergent series.

Nonlinear eq. y′ + y = x−1 + y2

formal sol.: ŷ = ŷ(x;C) = ŷ0(x) + Ce−xŷ1(x) + C2e−2xŷ2(x) + . . .

=
∑
k≥0

Cke−kxŷk(x) where ŷk are divergent series.
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For d ≥ 1:

Linear equations y′ +
(
Λ− 1

xA
)
y = f(x−1) (Λ, A diagonal, nonresonant)

Formal solution : ŷ = ŷ(x;C) = ŷ0(x) +
d∑

j=1

Cje−λjxxαjŷj(x) where ŷj(x) are

power series (usually divergent).

General nonlinear equations y′ +
(
Λ− 1

xA
)
y = g(x−1,y) (nonresonant)

Formal solution:

ŷ = ŷ(x;C) = ŷ0(x) +
∑

k∈Nd\0

Cke−λ·kxxα·kŷk(x)

where ŷk(x) are power series (divergent), determined algorithmically.
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ŷ = ŷ(x;C) = ŷ0(x) +
∑

k∈Nd\0

Cke−λ·k xxα·kŷk(x) (∗)

formal exponential power series. (If resonant - also logs.)

Note: (∗) is a valid asymptotic expansion (transseries) only if

it can be well ordered w.r.t. �.

Therefore (*) is a transseries only in the sector

Strans = {x ∈ C | <(λjx) > 0 for all j with Cj 6= 0}

Introduced by Fabris (1885). Studied by Cope (1934).

Vastly generalized by Ecalle (1981) to formal expressions closed under all operations.

In logic.
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Correspondence between formal and actual solutions?

Example: linear equation y′ + y = x−1

Formal solution ŷ(x;C) =
∑

n≥0 n!x−n−1 + Ce−x

Borel summation? Looking for y = LY take L−1 in the ODE:

=⇒ (1− p)Y (p) = 1 =⇒ Y (p) =
1

1− p
so y(x) =

∫
d

e−px 1
1− p

dp.

• d 6= R+. We can integrate on d± half-lines above/below R+.

• Furthermore:

∫
d+

6=
∫

d−

. Which one to choose?

• Note:

∫
d+

−
∫

d−

= 2πie−x. Recovers the exponentially small term!
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(*)

∫
d+

−
∫

d−

= 2πie−x where arg d+ ∈ (0, π/2), arg d− ∈ (−π/2, 0)

Ecalle:

• The median average gives the solution with no exponentially small term

(C = 0); e.g., in the 1-d linear case:

y(x; 0) = y0(x) =
1
2

∫
d+

e−px 1
1− p

dp +
1
2

∫
d−

e−px 1
1− p

dp

• The difference (*) gives the exponentially small term.

• These generalize to nonlinear equations.
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Example: nonlinear equation y′ + y = x−1 + y2 in d = 1.

Take L−1 =⇒ (1− p)Y (p) = 1 +
∫ p

0

Y (q)Y (p− q) dq

• Clearly ∃! solution Y (p) analytic at p = 0. It is analytic for |p| < 1.

• Clearly Y (p) is singular at p = 1.

• Convolution ; the singularity at p = 1 gives rise to singularities at p = 2, 3, 4, . . .

(an array of singularities, in the Borel plane, equally spaced).
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Y (p) is the sol. an. at p = 0 of the convol. eq. (1− p)Y (p) = 1 + (Y ∗ Y )(p).

Formal solution of the ODE: ŷ(x;C) =
∑
k≥0

Cke−kxŷk(x)

Each ŷk(x) is summed using yk(x) =
∑

j

αj,k

∫
dj,k

e−px Y (p) dp

weighted averages of Laplace transforms along paths winding in prescribed ways

among p = 1, 2, 3, . . ..

Finally, the series y(x;C) =
∑
k≥0

Cke−kxyk(x) converges to solutions for x ∈ San

San = {x
∣∣ − π

2
+ ε < arg(x) <

π

2
− ε, |x| > R}
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General nonlinear equations:

their transseries solution

ŷ(x;C) = ŷ0(x) +
∑

k∈Nd\0

Cke−λ·kxxα·kŷk(x)

can be summed similarly, in sectors. Generalized Borel summation:

• each ŷk(x) is generalized Borel summable to yk(x)
(using special averages of Borel summation along special paths), then

• the series
∑
k∈Nd

Cke−λ·kxxα·kyk(x) converges, and the limit is a solution.

12



(1957-59) Iwano showed that y(x;C) = y0(x) +
∑

Cke−λ·kxxα·kyk(x) with

yk(x) analytic, and convergent in sectors.

(1981) Ecalle constructed the summation of transseries (formal solutions of most

problems), establishing an isomorphism with a class of functions (”analyzable”).

(1990) Balser, Braaksma, Ramis, Sibuya proved multisummability of formal power

series solutions of linear equations.

(1992) Braaksma proved multisummability of formal power series solutions for

nonlinear equations.

(1998) O. Costin proved generalized Borel summation for transseries solutions of

rank 1, their 1-to-1 correspondence with solutions y(x) → 0 (in a sector), and

compatibility with all operations.

(2001-04) Braaksma proved similar results for solutions of difference equations.
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Let y′ +
(
Λ− 1

xA
)
y = g(x−1,y) nonresonant, Λ, A diag., g analytic at (0, 0).

Recall: the antistokes lines are ±iλjR+.

Let d a direction in C which is not an antistokes line.

Let S be the open sector bounded by two consecutive antistokes lines, d ⊂ S.

∀y(x) sol. with y(x) → 0 (x ∈ d, x →∞) then y(x) ∼ y0(x) (x ∈ S, x →∞).

Theorem (O. Costin, 1998)

There exists a 1-to-1 correspondence between :

solutions y(x) → 0 (x ∈ d, x →∞) and

generalized Borel summations of ŷ(x;C) transseries solutions in S.

These solutions y(x;C) are analytic in S for |x| large.
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Solutions y(x;C) → 0 for x →∞, x ∈ d are analytic in S for |x| large.

Question: what happens to y(x;C) as x approaches the boundary of S?

Example: d=1 y′ +
(
1− α

x

)
y = g(x−1, y) (λ = 1). Formal solution:

ŷ(x;C) = ŷ0(x) + Ce−xxαŷ1(x) + C2e−2xx2αŷ2(x) + C3e−3xx3αŷ3(x) + . . .

with ŷk(x) =
∞∑

j=0

yk,j

xj

valid in the sector Strans = {x;−π
2 < arg x < π

2}

generalized Borel summable to a solution y(x;C) analytic in

San = {x | − π
2 + ε < arg x < π

2 − ε, |x| > R, |Ce−xxα| < δ−1}

What happens to y(x;C) as arg x approaches π
2? (Similarly, for −π

2 .)
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ŷ(x;C) = ŷ0(x) + Ce−xxαŷ1(x) + C2e−2xx2αŷ2(x) + C3e−3xx3αŷ3(x) + . . .

Denote Ce−xxα = ξ . The transseries has the form

ŷ =
[y0,1

x
+

y0,2

x2
+ . . .

]
+ ξ

[
y1,0 +

y1,1

x
+

y1,2

x2
+ . . .

]
+ ξ2

[
y2,0 +

y2,1

x
+

y2,2

x2
+ . . .

]
+ . . .

For arg x < π/2: ξ � x−k 7→ the terms are well ordered.

For arg x = π/2: ξ 6� x−k 7→ the transseries breaks.

There is an intermediate region: x−k � ξ � 1. Reorder the transseries:

ŷ =
[
ξy1,0 + ξ2y2,0 + . . .

]
+

1
x

[
y0,1 + ξy1,1 + ξ2y2,1 + . . .

]
+

1
x2

[y0,2 + ξy1,2 + . . .] + . . .

with the form ŷ(x;C) = F0(ξ) +
1
x
F1(ξ) +

1
x2

F2(ξ) + . . .

Note: F0(0) = 0. Note: choose y1,0 = 1 (to fix C). ; F ′
0(0) = 1.

16



For d > 1: Say d = 2, and take λ1 = 1

y(x;C) = ŷ(0,0)(x) + C1e
−xxα1ŷ(1,0)(x) + C2e

−λ2xxα2ŷ(0,1)(x)

+C2
1e−2xx2α1ŷ(2,0)(x)+C1C2e

−x−λ2xxα1+α2ŷ(1,1)(x)+C2
2e−2λ2xx2α2ŷ(0,2)(x)+. . .

where y(0,0) = O(x−2), ŷ(1,0)(x) = e1 + O(x−1), ŷ(0,1)(x) = e2 + O(x−1).

Let ξ = C1e
−xxα1. Reorder for e−λ2x � x−k � ξ � 1:

y ∼
[
ξy(1,0),0 + ξ2y(2,0),0 + . . .

]
+

1
x

[
y(0,0),1 + ξy(1,0),1 + . . .

]
+ . . .

therefore y ∼ F0(ξ) +
1
x

F1(ξ) +
1
x2

F2(ξ) + . . . where F0(0) = 0, F1(0) = e1.

Note that e−λ2x is beyond all orders.

In fact F0(ξ), F1(ξ), F2(ξ) are functions that can be calculated from the ODE!
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Substitute y(x) ∼ F0(ξ) +
1
x

F1(ξ) +
1
x2

F2(ξ) + . . .

in y′ +
(
Λ− 1

xA
)
y = g(x−1,y) (with g(x−1,y) = O(x−2) + O(|y|2))

Use x−k � ξ = C1e
−xxα1 � 1 ; Fm recursively,

Fm are the unique sol. analytic at ξ = 0, of

ξF′0 = ΛF0 − g(0,F0), F′0(0) = e1

ξF′m = [Λ− ∂yg(0,F0)]Fm + α1F′m−1 + Rm(F0, . . . ,Fm−1)
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Representation for x near iR+ (recall λ1 = 1). Denote

E+ = {x ; −π

2
+ δ < arg x <

π

2
+ δ, <(λjx/|x|) > c, j = 2, . . . .}

Sδ1 = {x ∈ E+ ; |ξ(x)| < δ1}

Theorem 1. [Inv. Math., 2001]

There exists δ1 > 0 so that all Fm are analytic for |ξ| < δ1 and

y(x) ∼ F0(ξ) +
1
x

F1(ξ) +
1
x2

F2(ξ) + . . . uniformly for x ∈ Sδ1, x →∞.

The series is differentiable and satisfies Gevrey estimates.

It turns out that the series remains asymptotic in part of E+ \ Sδ1

near ξ = ξs singularity of F0.
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y(x;C) ∼ F0(ξ) +
1
x

F1(ξ) +
1
x2

F2(ξ) + . . .

The picture: If ξs is an isolated singularity of F0, calculate x = x̃n solutions

of ξ(x) = C1e
−xxα1 = ξs =⇒

x = x̃n = 2nπi + α1 ln(2nπi) + lnC1 − ln ξs + o(1), (n →∞)

Then each solution y(x;C) (specified by C) has an array of singularities at:

xn = x̃n + o(1) = 2nπi + α1 ln(2nπi) + lnC1 − ln ξs + o(1), (n →∞).

(almost periodic).

Moreover:

y(x;C) ∼ F0(ξ(x)) +
1
x

F1(ξ(x)) +
1
x2

F2(ξ(x)) + . . . for x →∞, x ∈ Dx

where Dx is a connected domain surrounding all xn with n > N .

(An asymptotic series valid near infinitely many singularities!)
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!/2+"arg(x)=-

0|x|=x

1   1|# |="

Singularities at one side of Strans (for λ1 > 0, C1 6= 0, C2,3,... = 0).
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Theorem 2. Let ξs be an isolated singularity of F0, so that

∃D ⊂ Riemann surface above C \ ξs with

- D open, rel. compact, connected, and {|ξ| < δ1} ⊂ D,

- F0 analytic in an ε-neighborhood of D,

- supD |F0| = ρ3 not too large (so that g(x−1,y) is analytic near D).

Let ξ(xn) = ξs 7→ xn = 2nπi + α1 ln(2nπi) + lnC1 − ln ξs + o(1), (n →∞).

Let Dx= {x | ξ(x) ∈ D, |x| > R}: connected Riemann surf. above C \ {xn}n>N .

Then for C1 6= 0: (a) Fm analytic on D, (b) y(x;C) analytic on Dx, and

y(x) ∼ F0(ξ(x)) +
1
x

F1(ξ(x)) +
1
x2

F2(ξ(x)) + . . . for x →∞, x ∈ Dx

(c) with Gevrey estimates |y(x)−
∑m−1

0 x−jFj| < Km!Bm|x|−m.

(d) y(x) is singular at a distance o(1) of xn.
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A very simple Example: the integrable equation y′ + y = x−2 + y2

ŷ = (
1
x2

+
2
x3

+
5
x4

+ . . .) + Ce−x(1− 2
x2
− 8

x3
+ . . .) + C2e−2x(1− 2

x2
+ . . .) + . . .

On the other hand, y(x) ∼ F0(ξ) + 1
xF1(ξ) + . . . for x � Ce−x = ξ, where

−ξF ′
0 + F0 = F 2

0 , F0 = ξ + O(ξ2) =⇒ F0(ξ) = ξ/(1− ξ).

F0 analytic for |ξ| < 1 (so all Fm are). F0 has a pole at ξs = 1 = Ce−x.

Therefore any solution y(x;C) is singular at the array xn = 2nπi + lnC + o(1).

Check: y =
v′

v
where v′′ + v′ − v

x2
= 0 (Bessel). Hence: each y has a pole at

each zero of v.

Substitute: v = e−x/2u ; u′′ − (1
4 + 1

x2)u = 0. For large x: u′′ − 1
4u ∼ 0

hence u ∼ sin(x
2 + B) with zeroes at 2nπi + 2B. It checks!

Note: The singularities of y have the same type as ξs of F0: first order poles.
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Example u′ = u3 + z Nonintegrable: Kruskal, Clarkson (poly-Painlevé test).

Needs normalization: algorithmic, find the formal solutions (transseries), and use

the transformation which bring them to the rank 1 form. Formal sol:

û = û0+Ce
9A2

5 z5/3
z2/3 û1+ . . . , with û0 = Az1/3(1+

∞∑
k=1

û0,kz
−5k/3), (A3 = 1)

x = −9A2

5 z5/3, u(z) = Kz1/3h(x), K = A3/5(−135)1/5, h = y + 1
3 −

1
15x ;

y′ + (1− 1
5x

)y = g(x−1, y) with g = O(x−2) + O(y2). Thus ξ = Cx1/5e−x

ξF ′
0 = F0(1+3F0 +3F 2

0 ), F0 = ξ +O(ξ2) ; ξ = ξ0 F0 (F0 + ω0)−θ (F0 + ω0)−θ

with singularities of type (ξ − ξp)−1/2 at ξp = (−1)p1,2ξ0e
p2π

√
3, p1,2 ∈ Z.
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In fact this is quite general:

Theorem 3. Equation weakly nonlinear (i.e. g(x−1,y) is not too big) have

(generically) F0 with square root singularities, and then y(x;C) have array of

singularities of the same type.

* * *

Solutions of u′ = u3 + z have a uniform asymptotic series

u(z) ∼ z1/3

(
1 +

1
9z5/3

+
∞∑

k=0

Fk (Cξ(z))
z5k/3

)
(as z →∞; z ∈ Rz;K,ε)

on a Riemann surface surrounding at o(1) distance infinitely many
√

- type sing.

(3 similar arrays).
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The Painlevé equation PI
d2u

dz2
= 6u2 + z

Solutions of the PI equation have arrays of poles, asymptotically represented by

elliptic functions (Boutroux, Joshi and Kruskal - expansions for generic solutions

and connection problem).

However: the truncated solutions (free of poles in some sectors) have the

same classical asymptotic expansion in the pole free sector:

they differ by a constant C beyond all orders.

Consider the one parameter family of solutions with u(z) ∼ +

√
−z

6
for z → −∞.

(The family u(z) ∼ −
√
−z

6
is similar.)
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Normalization: Find the general formal solution (transseries):

û =

√
−z

6

∞∑
k=0

ξk ûk, where ξ = Cx−1/2e−x, x =
(−24z)5/4

30

where û0 = 1− 1
8
√

6(−z)5/2
− 72

28 · 3
1
z5
− ...− ũ0;k

(−z)5k/2
− ...

Normalizing substitution: x =
(−24z)5/4

30
; u(z) =

√
−z

6
Y (x) ;

Y ′′(x) − 1
2

Y 2(x) +
1
2

= −1
x

Y ′(x) +
4
25

1
x2

Y (x) Boutroux form!

We need Y (x) = O(x−2) so substitute Y (x) = 1− 4
25x2

+ h(x) ;

PI normalized h′′ +
1
x
h′ − h− 1

2
h2 − 392

625
1
x4

= 0
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PI : h′′ +
1
x
h′ − h− 1

2
h2 − 392

625
1
x4

= 0

For y = (h, h′) we have λ1,2 = ±1, α1,2 = −1/2. Let ξ = Ce−xx−1/2.

(*) h(x) ∼
∞∑

k=0

x−kHk(ξ(x)) ; ξ2H ′′
0 + ξH ′

0 = H0 + 1
2H

2
0

with the initial condition H0(ξ) = ξ + O(ξ2) ; H0(ξ) =
ξ

(ξ/12− 1)2

ξs = 12 is a 2nd ord. pole, and (it is shown that) so are xn

Therefore (*) is asymptotic on the grey domain in the complex plane:
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!/2+"arg(x)=-

0|x|=x

1   1|# |="

Small neighbohoods of the poles in the array are removed.
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Returning to the original variables u(z) we obtain

Proposition. Let u be solution of PI:
d2u

dz2
= 6u2 + z

such that u(z) ∼
√
−z/6 for z →∞, arg(z) = π.

Let ε > 0 and Z = {z | arg(z) > 3
5π; |ξ(z)| < ε−1; |ξ(z)− 12| > ε}.

(Note: Z surrounds infinitely many poles of u, it starts at the antistokes line

arg(z) = 3
5π and extends slightly beyond the next antistokes line arg(z) = 7

5π. )

Then u ∼
√
−z

6

(
1− 1

8
√

6(−z)5/2
+
∞∑

k=0

30kHk(ξ)
(−24z)5k/4

)
(|z| → ∞, z ∈ Z)

The functions Hk are rational, and H0(ξ) = ξ(ξ/12− 1)−2.

The expansion holds uniformly in the sector 3π/5 < arg(z) < 7π/5 and also

for arg z ≈ 7π/5, (where H0 becomes dominant), down to an o(1) distance of the

actual poles of u if z is large.
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(*) h ∼
∞∑

k=0

x−kHk(ξ(x)), H0(ξ) =
ξ

(ξ/12− 1)2

Next terms: (**) H1 =
(

216 ξ + 210 ξ2 + 3 ξ3 − 1
60

ξ4

)
(ξ − 12)−3

H2 =
(

1458ξ + 5238ξ2 − 99
8

ξ3 − 211
30

ξ4 +
13
288

ξ5 +
ξ6

21600

)
(ξ − 12)−4

...

By induction: all Hm are rational functions and
1
h

has an asymptotic expansion with terms analytic near its singularities!

Find the zeroes of 1/h: substitute ξs = 12 + A
x + O(x−2) in (*), (**)

; A = 109
10 . Repeat to all orders ; ξs ∼ 12 + 109

10x + A2
x2 + . . .

(an asymptotic series, but sharp estimated could & should be given).
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Remarks. General features versus special features of PI:

1. ξ2H ′′
0 + ξH ′

0 = H0 + 1
2H

2
0 has gen. sol.:Weierstrass elliptic functions of ln ξ

(as expected).

But our initial condition: H0(ξ) = ξ + O(ξ2) ; rational function

(degenerate elliptic).

2. To determine H1 we need 2 constants (Hm solve ODEs of order 2).

- The condition that H1 analytic at 0 determines one constant.

- The other constant is determined in the next step, when solving for H2.

This continues for each m: typical for generic equations.

3. The last potential obstruction to Hn rational is successfully overcome at k = 6.

This is the special feature of integrability of PI.
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Sol. h′′ +
1
x
h′ − h− 1

2
h2 − 392

625x4
= 0 with h ∼

∞∑
k=0

x−kHk(ξ), (ξ = Ce−xx−1/2)

are distinguished by the parameter C beyond all orders.

How is C is linked to h(x)?

Using h(x) and least term truncation of its series (O. Costin, Kruskal, 1999):

C = lim
x→∞

arg(x)=φ

ex x1/2

h(x)−
∑

k≤|x|

h̃0,k

xk



Going back to the original variables of the truncated solutions of PI we have:
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Proposition. Let y by solution of PI:
d2y

dz2
= 6y2 + z

such that y(z) ∼
√
−z/6 for z →∞, arg(z) = π.

(a) For any φ ∈ (π, π + 2
5π) the constant C in the transseries ỹ of y is

lim
|z|→∞

arg(z)=φ

ξ(z)−1

√ 6
−z

y(z)−
∑

k≤|x(z)|

ỹ0;k

z5k/2

 = C

(b) If C 6= 0, y = y(x;C) has poles near the antistokes line arg(z) =
7π

5
at the points z = zn solutions of

ξ(zn) = 12 +
327

(−24zn)5/4
+ O(z−5/2

n ) (zn →∞)
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More precisely, the poles zn are located at

zn = −(60πi)4/5

24

(
n

4
5 + iLnn−

1
5 +

(
L2

n

8
− Ln

4π
+

109
600π2

)
n−

6
5

)
+ O

(
(lnn)3

n
11
5

)
(n →∞)

where Ln =
1
5π

ln
(

πiC2

72
n

)
.
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We obtained h(x) ∼
∞∑

k=0

x−kHk(ξ), (ξ = Ce−xx−1/2) (*) whith

H0(ξ) =
ξ

(ξ/12− 1)2
, H1 =

(
216 ξ + 210 ξ2 + 3 ξ3 − 1

60
ξ4

)
(ξ − 12)−3

H2 =
(

1458ξ + 5238ξ2 − 99
8

ξ3 − 211
30

ξ4 +
13
288

ξ5 +
ξ6

21600

)
(ξ − 12)−4, . . .

in a domain around an infinite array of poles.

The next array of poles. By induction: Hn ∼ Const.n ξn (ξ → ∞),

suggesting a reexpansion

h ∼
∞∑

k=0

H
[2]
k (ξ2)
xk

, with ξ2 = C [2]ξx−1 = C C [2]x−3/2e−x

Matching with (*) at ξ2 ∼ x−2/3, we get H
[2]
0 = H0 with C [2] = −1/60.
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ξ2 = C [2]ξx−1 = C [2] C x−3/2 e−x, H
[2]
0 = H0 with C [2] = −1/60.

If x
[1]
n belongs to the first line of poles, i.e. x = x

[1]
n solves Ce−xx−1/2 = ξs,

then second line of poles x
[2]
n is given by the condition

x = x[2]
n solves − 1

60
C x−3/2 e−x = ξs

so the second array it is situated at a logarithmic distance of the first one:

x[2]
n − x[1]

n = − lnx[1]
n + πi− ln(60) + o(1)

Similarly, on finds the third array of poles x
[3]
n using the scale ξ3 = C [3]ξ2x

−1, and

. . . in general x
[k]
n . . .
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Alternatively: the expansion can be matched directly to an adiabatic invariant-

like expansion valid throughout the sector where h has poles.

... detailed in Ovidiu’s talk.
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The Painlevé equation P2 u′′ = 2u3 + xu + α

Distinct solution manifolds (& asymptotics) ; different normalizations.

1. For u ∼ −α

x
set x = (3t/2)2/3; u(x) = x−1(t h(t)− α)

giving the normal form

h′′ +
h′

t
−
(

1 +
24α2 + 1

9t2

)
h− 8

9
h3 +

8α

3t
h2 +

8(α3 − α)
9t3

= 0

with λ1 = 1, α1 = −1/2; ξ = e−t
√

t
.

Then ξ2F ′′
0 + ξF ′

0 = F0 + 8
9F

3
0 with solution F0(ξ) =

ξ

1− ξ2/9

ξs = ±3 ; two arrays of poles of order one.
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2. For u ∼ −B−α
2x−3/2 set x = (At)2/3, y(x) = (At)1/3

(
w(t)−B + α

2At

)
where A2 = −9/8, B2 = −1/2. The normal form here is

w′′ +
w′

t
+ w

(
1 +

3Bα

tA
− 1− 6α2

9t2

)
w

−
(

3B − 3α

2tA

)
w2 + w3 +

1
9t2
(
B(1 + 6α2)− t−1α(α2 − 4)

)

λ1 = 1, α1 = −1
2
− 3

2
Bα

A
; ξ2F ′′

0 +ξF ′
0−F0 = 3BF 2

0 −F 3
0 ; F0 =

2ξ(1 + Bξ)
ξ2 + 2

ξs = ±
√

2i ; two arrays of poles of order one.

Uniform asymptotic series are found in regions surrounding infinite arrays

of poles.
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Conclusions.

1. Solutions which are analytic in sectors towards an irregular singularity

develop, on the boundary of this sector, arrays of singularities, almost periodically

spaced.

2. Uniform asymptotic series can be found in regions surrounding each of these

arrays, close to o(1) of these singularities.
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