1 Sets

In mathematics, any collection or system of objects is called a set. The objects a set A is made of are called elements of the set A. If x is one of these objects we say that x is an element of A (or, that x belongs to A), and denote $x \in A$.

If y is not an element of A we write $y \notin A$ (read: y does not belong to A).

Examples of sets:
- the collection of chairs in room CL 137,
- the words on this page,
- an open interval (a, b) (which is the collection of all real numbers x satisfying $a < x < b$),
- the set consisting of the numbers 2, 3, 4, 5 and 6: \{2, 3, 4, 5, 6\} (when enumerating the elements of a set, you do so between \{ and \}),
- the integer numbers: \ldots, −3, −2, −1, 0, 1, 2, 3, . . .

The empty set is the set with no elements; it is denoted by \emptyset.

1.1 Subsets

Given two sets A, B we say that A is included in B (or that A is a subset of B) and denote $A \subset B$, if any element of A is also an element of B:

$$A \subset B \quad \text{if and only if } \quad x \in A \implies x \in B$$

If $A \subset B$ we can also say that B includes A, and denote $B \supset A$.

Examples:
1) The set of natural numbers is a subset of the real numbers.
2) $(1, 3) \subset [1, 3) \subset [1, 4)$
3) The empty set is included in any set: $\emptyset \subset A$.
4) $A \subset A$.

The notation $A \not\subset B$ means that the set A is not included in B.

Example: \{-1, 0, 2, 3, 4\} \not\subset [0, +\infty)$. Why?
1.2 Operations with sets

Union \(A \cup B \) is the set which collects all elements of \(A \) and \(B \):

\[
x \in A \cup B \text{ if and only if } x \in A \text{ or } x \in B
\]

Examples:
1) \(\{0, 1, 2, 3, 4\} \cup \{3, 4, 5, 6\} = \{1, 2, 3, 4, 5, 6\} \).
2) The domain of the function \(f(x) = 1/x \) is the set \((-\infty, 0) \cup (0, +\infty) \).
3) \(\emptyset \cup A = A \)

Note: \(A \cup B = B \cup A \).

Intersection \(A \cap B \) is the set which collects all elements common to \(A \) and \(B \):

\[
x \in A \cap B \text{ if and only if } x \in A \text{ and } x \in B
\]

Examples:
1) \(\{0, 1, 2, 3, 4\} \cap \{3, 4, 5, 6\} = \{3, 4\} \)
2) \([0, 2] \cap [1, 2] = [1, 2] \)
3) \(\emptyset \cap A = \emptyset \)

Note: \(A \cap B = B \cap A \).

Difference \(A \setminus B \) is the set which collects all elements of \(A \) which do not belong to \(B \):

\[
x \in A \setminus B \text{ if and only if } x \in A \text{ and } x \notin B
\]

Examples:
1) \(\{0, 1, 2, 3, 4\} \setminus \{3, 4, 5, 6\} = \{0, 1, 2\} \).
2) \([0, 10] \setminus [1, 2] = [0, 1) \cup (2, 10] \)
3) \(A \setminus A = \emptyset \), \(A \setminus \emptyset = A \).
1.3 Exercises

1.1 Write, using a set notation, the domain of the following functions:

\[f(x) = \sqrt{1 - x^2} \quad , \quad g(x) = \left(x^3 - 1 \right)^{1/3} \quad , \quad h(x) = \sqrt{x - 2} + \sqrt{4 - x} \]

1.2 Suppose the domain the function \(F(x) \) is the set \(A \), and the domain of the function \(G(x) \) is the set \(B \). Then the function \(F(x) + G(x) \) is certainly defined for numbers in which set?

1.3 Suppose the sets \(A \) and \(B \) are such that \(A \subset B \). Find the following sets: \(A \cap B, A \cup B, A \setminus B, B \setminus A \). Explain! (Draw a picture and explain in words.)

1.4 Suppose \(A \subset B \) and \(B \subset C \). Find \(A \cap C \). Explain! (Use both pictures and words.)

1.5 (A gentle work-out for the logical thinking muscle.)

Suppose \(Y \) is the set of yellow flowers in Mary’s garden, and \(R \) is the set of roses in Mary’s garden. What can you say about the flowers in Mary’s garden

1) if \(R \subset Y \) ?
2) if \(R \not\subset Y \) ?
3) if \(Y \subset R \) ?
4) if \(Y \not\subset R \) ?
5) if \(R = Y \) ?

1.6 Denote by \(E \) the set of all even integers, and by \(T \) the set of all integers which are a multiple of 3 (so they are divisible by 3). Which of the following statements are true, and which are false? Explain!

1) \(100 \in E \)
2) \(100 \in T \)
3) \(100 \in E \cup T \)
4) \(100 \in E \cap T \)
5) \(100 \in E \setminus T \)
6) \(100 \in T \setminus E \)