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Study a class of differential systems in Cd (first order, nonlinear),

studied in domains containing two, or more singularities (semi-local study).

Motivation: the study integrability - existence of single-valued first integrals.

* Near a regular point all equations are equivalent ; integrable (locally).

* Non-integrability can be detected in regions which contain singularities.

Integrability has deep connections to other important mathematical objects,

such as orthogonal polynomials. In some cases this is understood, via the Riemann-

Hilbert or inverse scattering reformulation of integrable systems, in some others it

is less well understood.

The study of higher dimensional systems turns out to connect to interesting, and

new, higher dimensional, usually non-commutative generalizations of the classical

orthogonal polynomials.
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I will discuss theses problems separately, as well as their interconnections, as

far as we understand them now.
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Linear systems

A first order linear system
dw
dx

= A(x)w w ∈ Cd, A(x) ∈Md(C)

is Fuchsian if all its singularities in C ∪ {∞} are regular.

Singularity - point x = x0 where A(x) is not analytic.

If x0 is an isolated singularity ⇒ fundamental system Y (x) = Φ(x)(x− x0)P

with Φ(x), P matrices, and Φ(x) has an isolated singularity at x0.

If x0 is at most pole of Φ, then x0 = regular singularity (Fuchsian point) ⇒
solutions = convergent series in powers of x− x0 [& possibly ln(x− x0)].

For a Fuchsian system, with singularities at p0, p1, . . . , pS+1,∞ (all Fuchsian)

=⇒ A(x) =
S+1∑
j=0

1
x− pj

Aj, with Aj = constant matices.
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Fuchsian systems appear in a wide range of problems of mathematics and

physics, and have been the topic of extensive studies.

Nonlinear systems with Fuchsian linear part

du
dx

= A(x)u +
1

Q(x)
f(x,u) with A(x) =

S+1∑
j=0

1
x− pj

Aj

◦ for x ∈ D 3 {p0, p1, . . . , pS+1}, D ⊂ C and u ∈ Cd, |u| < r

◦ f = O(|u|2), f analytic for x ∈ D, |u| < r

◦ the denominator Q(x) = (x− p0)(x− p1) . . . (x− pS+1) simply shows that the

nonlinear term can have at most first order poles at pj.

Q: which systems are analytically equivalent to their linear part for x ∈ D?

Q: More generally, classify!
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Motivation

♦ The question of linearization and, more generally, of classification, is a

fundamental problem in the theory of differential equations.

♦ Vector fields with an eigenvalue 1:
du
dx

= A(x)u +
1

Q(x)
f(x,u) 
{

ẋ = Q(x) ... polynomial in x, deg. S + 1
u̇ = Q(x)A(x)u + f(x,u) ... u× polynom. deg. S + O(u2)

studied in a domain containing the S + 1 singular points (pj,0) where Q(pj) = 0.

♦ Irregular singularities can be obtained, and studied, as limits when two, or

more, regular singular points tend to coincide: coalescence.

♦ The study of integrability: reductions of Hamiltonian systems, with

polynomial potentials, near doubly periodic solutions (RDC - ’96, ’97).
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♦ Classification of Schrödinger-type equations w.r.t. global behavior

(work in progress).

♦ The study reveals:

◦ inter-connections between analysis and algebra (as in the linear case).

In particular, it gives rise to:

-Matrix-valued generalizations of the Jacobi polynomials and of multiple-orthogonal

polynomials;

-Generalization of the notion of orthogonality for Jacobi polynomials in the case of

general weights.

◦ A close connection between three concepts: linearizability, integrability and

multiple orthogonal polynomials.
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Prior results - local study

♦ In dimension one, near one singular point equations - Martinet and Ramis.

♦ Near one singularity: vector fields have been also studied, have generated

deep results, and are relatively well understood.

The present talk considers regions containing two or more singularities - semi-local

study.

Other types of results concerning correction and linearization/integrability:

* Écalle and Vallet showed that resonant systems are linearizable after appropriate

correction (1998);

* Gallavotti showed that there exists appropriate corrections of Hamiltonian systems

so that the new system is integrable (1982), convergence proved by Eliasson (1988).
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Systems near one singularity
du
dx

=
1
x
L(x)u +

1
x

f(x,u), L(x)=analytic at 0.

If σ(L(0)) is nonresonant, then: analytic transf. ; L(x) ≡ L(0) = L.

Theorem Analytic linearization near one singularity holds for generic systems:

if σ(L) is ’not too close’ to resonance ∃ u = h(x,w) analytic for |x| < ε, |u| < ε1

du
dx

=
1
x
Lu +

1
x

f(x,u) ⇐⇒ dw
dx

=
1
x
Lw

Consequence The study of the local analytic properties of nonlinear systems

reduces to the study of the linear ones. Eq. xw′ = Lw is easy to study!

In particular ; local integrability: generically equations do have first integrals in

D, and not meromorphic (accumulation of poles at x = 0 and/or w = 0).
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Q: What about wider regions, containing several regular singular points?

(*) u′ = (
S+1∑
j=0

1
x− pj

Aj)u +
f(x,u)∏
(x− pj)

, Q(x) =
∏

(x− pj)

Region: x ∈ D ⊂ C simply connected domain D 3 p0, . . . , pS+1 & u ∈ Cd, |u| < r

f = O(|w|2), holomorphic on D × {|u| < r}.

Is the system linearizable?
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Q: What about wider regions, containing several regular singular points?

(*) u′ = (
S+1∑
j=0

1
x− pj

Aj)u +
f(x,u)∏
(x− pj)

, Q(x) =
∏

(x− pj)

Region: x ∈ D ⊂ C simply connected domain D 3 p0, . . . , pS+1 & u ∈ Cd, |u| < r

f = O(|w|2), holomorphic on D × {|u| < r}.

A: Systems are not necessarily linearizable - the analytic map which provide analytic

linearization near one singularity is (usually) ramified at the other singularities.
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This has important consequences!

Illustrate in 1-d, for two singularities (S = 0):

Theorem (RDC, M.D. Kruskal, Nonlin.’03)

If the nonlinear eq.
du

dx
=

(
a0

x− p0
+

a1

x− p1

)
u +

f(x, u)
(x− p0)(x− p1)

is not analytically linearizable

then no single-valued integrals exists (it is not integrable) for generic a0, a1.

Among integrable cases, first integrals are not meromorphic (generically).

Q: Which equations are linearizable, and which are not?

Q: Classify: find the equivalence classes w.r.t. analytic equivalence.
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Theorem Correction and linearization

Let
du
dx

= A(x)u +
f(x,u)
Q(x)

(∗) with A(x) =
S+1∑
j=0

1
x− pj

Aj, Q(x) =
∏

(x− pj)

assuming A0, . . . , AS+1, A∞ =
∑

Aj nonresonant

(k + λ ·m− λi 6= 0, for all k ∈ N, m ∈ Nd, |m| ≥ 2, i = 1, . . . , d)

Then ∃ unique correction φ(x,u) =
∑

m∈Nd, |m|≥2

φm(x)um (formal series)

where φm(x) are polynomials in x of deg. ≤ S, such that the corrected system

du
dx

= A(x)u +
f(x,u)− φ(x,u)

Q(x)
is (formally) linearizable.

Note. Equation (*) is linearizable iff φ(x,u) ≡ 0, so

the unique correction φ is the obstruction to linearizability.
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Convergence of the correction φ(x,u)?

Theorem (RDC, Nonlin, 2008)

Convergence holds in the commutative case, for two singularities, eigenvalues with

positive real parts.

Proof:

steepest descent ; small denominators ; improvement of a rapidly convergent

algorithm.

* * *

If a system is not formally linearizable, then it is not analytically linearizable

either.
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Since equations are not necessarily linearizable, then they are not all equivalent

either. Classification of these equations by specifying formal normal forms:

Theorem Normal form

(Assume non-resonance.) For any f(x,w) analytic on D × {|w| < r}

there exists a unique formal series p(x,w) =
∑

m∈Nd, |m|≥2

pm(x)wm

where pm(x) are polynomials in x of degree at most S, such that

du
dx

= A(x)u +
f(x,u)
Q(x)

⇐⇒

dw
dx

= A(x)w +
p(x,w)
Q(x)

through u = h(x,w) = w +
∑

hm(x)wm with hm(x) analytic on D.
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Normal forms:

Near a regular point:
du
dx

= M(x)u + f(x,u) ⇔ dw
dx

= 0
(keep no terms)

Near one reg. sing. point: x
du
dx

= L(x)u + f(x,u) ⇔ x
dw
dx

= L(0)w (generic)

(keep the linear part)

Near two reg. sing. point: x(x− p1)
du
dx

= (L0 + xL1)u + f(x,u) ⇐⇒

x(x− p1)
dw
dx

= (L0 + xL1)w+ψ0(w) (generic)

(keep some nonlinear terms)

Near three reg. sing. point: x(x− p1)(x− p2)
du
dx

= (L0 + xL1 + x2L2)u + f(x,u) ⇔

x(x− p1)
dw
dx

= (L0 + xL1 + x2L2)w +ψ0(w) + xψ1(w) (generic)

(keep more nonlinear terms) Etc.
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Proofs. A change of variables u = h(x,w) provides a linearization iff

(∗∗) ∂xh + dwhAw = Ah +
1

Q(x)
[f(x,w + h)− φ(x,w + h)]

Power series in w: denote by hn the homogeneous part degree n of h(x,w):

hn(x,w) =
∑
|m|=n

hm(x)wm, (n ≥ 2), similarly fn, φn

(**) splits into blocks of systems of ordinary differential equations for {hm}|m|=n:

∂xhn + dwhn Aw −Ahn =
1

Q(x)
Rn(x,w), n ≥ 2

where Rn = fn − φn + R̃n with R̃n a polynomial in φm, hm, fm with |m| < n,

and R̃2 = 0. Each hn and φn are to be determined from inductively on n.

The system is complicated due to non-commutativity (unlike near 1 sing. or 1d)...
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∂xhn + dwhn Aw −Ahn =
1

Q(x)
Rn(x,w), n ≥ 2

Remarkably, the system for hn is a Fuchsian non-homogeneous system!

(If properly organized...)

Denote Pn the space of Cd-valued polynomials in w ∈ Cd, homog. degree n:

Pn =

 q ; q(w) =
∑

m∈Nd,|m|=n

qmwm, qm ∈ Cd

,

canonical basis rm,i = wmei, |m| = n, i = 1, . . . , d

Denote N =dimPn = d(n + d− 1)!/n!/(d− 1)!.

Denote by B(x) the linear operator on Pn: B(x)hn = dwhn Aw −Ahn

Note that B(x)=a Fuchsian matrix (in the canonical basis) since

B(x) =
S+1∑
j=0

1
x− pj

Bj where Bjq = dwqAjw −Ajq.
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The recursive system ∂xhn + dwhn Aw −Ahn =
1

Q(x)
Rn(x,w), n ≥ 2

has the structure (*)
d

dx
hn + B(x)hn =

1
Q(x)

Rn(x,w), where

B(x) =
S+1∑
j=0

1
x− pj

Bj where Bjq = dwqAjw −Ajq

therefore (*) is a Fuchsian non-homogeneous system.

The Theorems now follow using recursively the following results concerning

non-homogeneous Fuchsian equation:
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Fundamental Lemma Consider y′(x) + B(x)y(x) =
g(x)
Q(x)

a Fuchsian equation with a non-homogeneous term (y ∈ CN) where

B(x) =
S+1∑
j=0

1
x− pj

Bj, and Q(x) =
∏S+1

j=0 (x− pj). Let D 3 p0, . . . pS+1.

Non-resonance: k + Bj are invertible for all j and j = ∞ (where B∞ =
∑

Bj).

Then for any function g(x) analytic on D there exists a unique φ(x) ∈ CN [x],
degφ ≤ S so that the corrected equation

y′(x) + B(x)y(x) =
g(x)− φ(x)

Q(x)

has a solution y(x) analytic on D.
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The proof consists of several steps:

(1) Show the uniqueness of the correction.

(2) Prove the Lemma when g(x) is a polynomial.

Solutions are found as expansions in terms of matrix-valued generalizations of

orthogonal, or multiple orthogonal, polynomials which are introduced here.

(3) Proof of the Lemma for the case when the eigenvalues of all matrices Bj

have positive real parts. An analytic approach is used (int. factor, integrals).

(4) Show that the general case (when integrals diverge) reduces to (3), thus

completing the proof of the Lemma.

The algebraic results of (2) are used to construct this reduction.

(Bonus) A generalized integral is defined, so that the general case (4) can be

proved using analytic methods just like in (3).
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Matrix-valued polynomials generalizing
the classical orthogonal polynomials

Given an interval J and a weight function w(x), a sequence of orthogonal

polynomials p0, p1, . . . , pn, . . . is a sequence such that deg pn = n and

< pk, pn >:=
∫

J

pk pn w = 0 whenever k 6= l (are ⊥ w.r.t. a bilinear form).

Classical orthogonal polynomials:

• Legendre for J = [−1, 1] and w(x) = 1;

• Jacobi (and sub-classes) for J = [−1, 1] and w(x) = (1− x)α(1 + x)β;

• Associated Laguerre for J = [0,∞) and w(x) = xαe−x;

• Hermite for J = R and w(x) = e−x2
.

They were introduced in connection to continued fractions, and now have an

impressive number of applications in mathematics and mathematical physics

(approximation theory, differential systems, integrable systems, random matrices...)
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They all have an impressive number of beautiful common properties: two-step

recurrence relations, are eigenfunctions to Sturm-Liouville operators (...), they

satisfy a Rodrigues’ formula: pn(x) = w(x)−1 dn

dxn
[Q(x)nw(x)] (with Q=pol.)

Generalizations of orthogonal polynomials to matrix-valued ones - early work

of Krein (on Jacobi matrices), more recently - Aptekarev, Nikishin, very active in

recent years - B. Simon, A. Grünbaum [...]

The matrix-valued generalizations which appear in the study of Fuchsian systems

are polynomials which satisfy a Rodrigues’ formula - because

y′ + B(x)y = g/Q ⇐⇒ d

dx
[W (x)y] = W̃ (x)g, with W̃ = WQ−1, W ′ = WB

Plan: we define them using a Rodrigues’ formula, then show that they satisfy

many of the properties usually associated to the classical orthogonal polynomials.

(R.D.C. JAT ’09, JAT ’09)
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V =complex vector space; M = L(V, V ), M[x]=M-valued polynomials.

Let Q(x)=polynomial (deg≤ 2): Q(x) = σx2 + τx + δ.

Let L1, L2 ∈M with L1 (nonresonant): L1 + kσ is invertible ∀k = 1, 2, . . .

W (x) is M-valued, s.t. Q(x) W ′(x) = W (x) (xL1 + L2) (the Pearson eq.)

(a Fuchsian system if deg Q = 2, or higher)

Definition Let Pn(x) be the M-valued function defined by the Rodrigues formula

Pn(x) = W (x)−1 dn

dxn
[Q(x)n W (x) ].

Notes:

If dimV = 1 then Pn(x) are the classical orthogonal polynomials.

If L1 ∧ L2 are diagonal, then Pn(x) is diagonal (entries classical orth. pol.).

If L1 ∨ L2 are not diagonal, it is not clear that Pn are polynomials...

A direct calculation gives:

P0 = I, P1(x) = (2σ + L1)x + τ + L2, . . .
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Non-commutativity made earlier studies very hard. A new representation:

Proposition Denote by Ak the following linear operators on M(x):

Ak = k Q′(x) + xL1 + L2 + Q(x)∂x Then Pn = A1A2 . . .An I. (Not ladder!)

• Therefore Pn are polynomials.

• The leading coeff. is Cn = (L1 + 2nσ) [L1 + (2n− 1)σ] . . . [L1 + (n + 1)σ]
which is invertible, therefore degPn=n.

• Expan.: ∀p ∈M[x], deg p = n ∃!q0, . . . , qn ∈M with p(x) =
∑n

k=0 Pk(x)qk

The following (orthogonality) relations hold:∫
J

Pj(x)∗W (x) Pk(x) dx = 0 for j < k and∫
J

Pj(x)∗W (x)∗Pk(x) dx = 0 for j > k

Moreover, other properties characteristic to orthogonal polynomials hold:
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Proposition Two-step recurrence relation:

xPn(x) = Pn+1(x)αn + Pn(x) βn + Pn−1(x)γn

Proposition If L1 and L2 commute then Pn are eigenfunctions for the

operator A1∂x and A1∂xPn = n [(n + 1)σ + L1]Pn

Proofs rely on commutation relations of Ak = k Q′(x) + xL1 + L2 + Q(x)∂x

- which are key to the beautiful properties of the classical orthogonal polynomials

(and make non-commutative cases manageable):

Proposition For r ∈M(x) the operators Ak satisfy the identities

(a) Ak(x r) = xAk r + Qr

(b) QAk r = Ak−1 (Qr)
(c) ∂xAk r = Ak+1∂xr + (2σk + L1)r
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We have Pn = A1A2 . . .An I with Ak = k Q′(x) + xL1 + L2 + Q(x)∂x .

(a) Ak(x r) = xAk r + Qr

(b) QAk r = Ak−1 (Qr)
(c) ∂xAk r = Ak+1∂xr + (2σk + L1)r

Example: show that in the commutative case (this includes the classical

polynomials!) Pn are eigenfunctions for the operator A1∂x and find the eigenvalues.

An iterative calculation A1∂xPn = A1∂xA1A2 . . .AnI = (2σ + L1)Pn +
A1A2∂xA3 . . .AnI = . . . = [(2σ + L1) + . . . + (2nσ + L1)]Pn. The End

A non-commutative example: find the two-step recurrence relation

xPn(x) = Pn+1(x)αn + Pn(x) βn + Pn−1(x)γn

Note: A1A2 . . .An(x q) = A1A2 . . .An−1 (xAnq) + A1A2 . . .An−1 (Qq) =
. . . = xA1A2 . . .Anq + nA1A2 . . .An−1 (Qq)
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We found A1A2 . . .An(x q) = xA1A2 . . .Anq + nA1A2 . . .An−1 (Qq).

So Anx − nQ = AnAn+1αn + Anβn + γn which expanded yields an identity of

quadratic polynomials in x, and by identifying the coefficients we obtain three

equations for αn, βn, γn and solve them. Q.E.D!
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Matrix-valued Jacobi-Angelesco polynomials

y′(x) + B(x)y(x) =
g(x)
Q(x)

with B(x) =
S+1∑
j=0

1
x− pj

Bj, Q(x) =
∏S+1

j=0 (x− pj).

For two singularities S = 0 (→deg Q = 2) ; the above matrix-valued polynomials.

For more singularities (→ higher deg Q) the Rodrigues’s formula only yields

polynomials of degree multiple of S +1 and these polynomials do not form a basis.

A basis of matrix-valued polynomials is Pn (x) = W (x)−1 dm

dxm

[
xi Q(x)m W (x)

]
where n = (S + 1)m + i with m = bn/(S + 1)c, and i = 0, 1, . . . , S.

In the scalar case and for S = 1 these are the Jacobi-Angelesco polynomials.
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Orthogonality of Jacobi and Laguerre polynomials
for general weights

Jacobi polynomials P
(α,β)
n : on J = [−1, 1] w.r.t. w(x) = (1− x)α(1 + x)β:

< f, g >=
∫ 1

−1

f(x) g(x) (1− x)α(1 + x)β dx

Laguerre polynomials L
(α)
n : on J = [0,∞) w.r.t. w(x) = xαe−x:

< f, g >=
∫ ∞

0

f(x) g(x) xαe−x dx

The integrals are defined only for <α, β > −1, but:

1) other properties (e.g. 2-step recurrence) hold for most α, β ∈ C and

2) it is known that they are orthogonal w.r.t. a bilinear form (Favard’s Theorem).

Question: find this bilinear form!
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The natural approach: by analytic continuation in the parameters of the Borel

measure of the classical case.

◦ Carlson - uses an integral kernel - proves Jacobi series expansions for functions

analytic on ellipses.

◦ Recently Kuijlaars, Mart́ınez-Finkelshtein and Orive establish orthogonality - in

some cases - by integration on special paths in the complex plane.

Another approach (RDC, J.Approx.Theory, ’09): using the Hadamard finite part

of the (divergent) integrals.

Advantage Since these can be manipulated much like integrals, the classical

formulas which are analytic in the parameters are formally similar. (They do not

behave well with respect to inequalities.)
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Definition Let α ∈ C \ (−N). For f(x) analytic at x = 0 and x small

define 6
∫ x

0

tα−1 f(t) dt =6
∫ x

0

tα−1
∞∑

n=0

fntn dt :=
∞∑

n=0

fn

n + α
xn

Example The general solution of x y′ + αy = f(x)

is y = Cx−α + x−α 6
∫ x

0

tα−1 f(t) dt

Theorem The operator f 7→ x−α 6
∫ x

0

tα−1 f(t) dt is compact and analytic in α

(between suitable Banach spaces of analytic functions).

Once analyticiy in parameters of the Hadamard finite part is established the

usual properties of orthogonal polynomials should follow by analytic continuation.
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