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In 1882 Smith included in his ‘Algebra’ a formula for the
convergents of the following continued fraction
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We study pure periodic negative-regular continued fractions
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+
· · · , (3)

representing rational numbers x where b1, b2,. . ., bn are
positive integers.
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Convergence

It is easy to see that for every real x
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The corresponding periodic continued fraction
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obviously diverges. Indeed, putting x = 0 in (4) we obtain that
P5n/Q5n = 0 for every n. Putting x = −1/3 in (4) we obtain that
P5n+1/Q5n+1 = −1/3 for every n. The same is true for any
period representing the identity.
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Tietze Theorem

Theorem (Tietze)

Let {ak}k≥1 be a sequence of nonzero integers and {bk}k≥1 be
a sequence of positive integers such that bk ≥ |ak | for every k
and bk ≥ |ak |+ 1 if ak+1 < 0. Then the continued fraction

a1

b1 +

a2

b2 +···+

an

bn +
· · ·

converges to an irrational number except for the case if ak < 0
and bk = |ak |+ 1 starting from some place.
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Corollary

Corollary

If {b1,b2, . . . ,bn} is a period of a negative-regular continued
fraction representing a rational number x then bk = 1 for some
k.
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Negative Integers

Euler related partial sums of series to convergents of continued
fractions:
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Iterating we obtain for negative integers −n, n ≥ 2:
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Convergence of Periodic Fractions

Theorem

Every rational number is the value of a convergent pure
periodic negative-regular continued fraction.
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A construction of minimal periods
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These expansions are obtained by a generalized Euclidean
algorithm. Then

x ⊕ s(x−1)
def
= {a1,a2, . . . ,ak−1,ak + cm, cm−1, . . . , c1} 7→ x (8)

is the minimal period for x . For example
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Consider the following rational function Rn(x1, x2, . . . , xn):

x1x2 · · · xn−1xn

(
1− 1

x1x2

)
· · ·
(

1− 1
xn−1xn

)(
1− 1

xnx1

)
and denote by Dn(x1, . . . , xn) the polynomial part [[Rn(x1, . . . xn)]]
of Rn. Then x1 = b1, x2 = b2,. . ., xn = bn is a solution to the
Diophantine equation

Dn(x1, . . . , xn) = ±2 . (9)

The solutions to (9) not assigned to the periods of rational
numbers correspond to the identities of the type (4). For
example for n = 2,3,4 we have:

D2 = b1b2 − 2 ,
D3 = b1b2b3 − b1 − b2 − b3

D4 = b1b2b3b4 − b1b2 − b2b3 − b3b4 − b4b1 + 2 .

Sergey Khrushchev and Michael Tyaglov



Introduction
Diophantine Equations

The semigroup of periods
Minimal and Primitive Periods

Elliptic elements of Γ

n = 1 2 3 4 5
{2} {2,2} {2,2,2} {2,2,2,2} {2,2,2,2,2}

{1,4} {1,2,5} {1,2,2,6} {1,1,4,1,1}
{1,3,3} {1,2,5,3} {1,2,1,3,1}
{1,1,b} {1,3,1,6} {1,2,2,2,7}

{1,2,3,4} {1,2,6,2,3}
{1,4,1,4} {1,3,1,3,6}
{1,2,1,b} {1,2,3,1,7}
{1,2,b,2} {1,2,3,5,3}

{1,2,2,5,4}
{1,2,6,1,4}
{1,2,2,3,5}
{1,2,4,3,3}
{1,3,1,4,4}
{1,2,4,1,5}
{1,2,2,1,b}
{1,2,b,1,3}
{1,3,1,2,b}
{1,2,2,b,3}
{1,3,1,2,b}
{1,3,1,b,2}
{1,2,b,1,3}

Table: Periods for n ≤ 5
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Convergence of Periodic Fractions

Theorem

A rational x is the value of a convergent periodic
negative-integer continued fraction

x =
−1
b1 +

−1
b2 +···+

−1
bn︸ ︷︷ ︸

n

+

−1
b1 +

−1
b2 +···+

−1
bn︸ ︷︷ ︸

n

+
· · · (10)

if and only if Qn−1 6= 0 and Pn−1 + Qn = ±2. In particular, it
converges to x = 0 if and only if Qn−1 6= 0 and Pn = 0; if
Qn−1 = 0 and Pn 6= 0, then the periodic continued fraction
diverges to∞; if Qn−1 = 0 and Pn = 0, then the periodic
continued fraction diverges.
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It is easy to see that if (10) converges to x then x is a root of
the characteristic quadratic equation

Qn−1X 2 + (Qn − Pn−1)X − Pn = 0 (11)

of the period {b1, . . . ,bn}. As Theorem 4 shows the
convergence of (10) under assumption Pn−1 + Qn = ±2 is
determined by the entries of the matrix

A =

(
Pn−1 Pn
Qn−1 Qn

)
.

The equation (11) can be rewritten as

x =
−1
b1 +

−1
b2 +···+

−1
bn + x

=
Pn−1x + Pn

Qn−1x + Qn
. (12)
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Corollary

The continued fraction (10) with Pn−1 + Qn = ±2 diverges if
and only if its period represents the identity.

Proof.
By the determinant identity for continued fractions

PnQn−1 − Pn−1Qn = −1 .

If (10) diverges then Pn−1Qn = 1 by Theorem 4. It follows that
Pn−1 = Qn = ±1. Hence the period {b1,b2, . . . ,bn} represents
the identity by (12). The converse arguments were illustrated
on the example of (5).
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Multiplication of periods

We consider periods {b1,b2, . . . ,bn} as well-ordered finite sets
of not necessarily different positive integers. The set P of all
periods is a semigroup with respect to the following operation:

{b1,b2, . . . ,bn} · {c1, c2, . . . , ck} = {b1, . . . ,bn, c1, . . . , ck} .
By (12) the mapping

m{b1,b2, . . . ,bn} =

(
Pn−1 Pn
Qn−1 Qn

)
(13)

is a homomorphism of P into the special linear group SL(2,Z)
of all 2× 2 matrices A with integer entries satisfying det(A) = 1.
The kernel Ker(m) of m consists of all periods representing the
identity. Every A ∈ SL(2,Z) determines the Möbius transform

κ(A)(z) = µ(z) =
az + b
cz + d

. (14)
Sergey Khrushchev and Michael Tyaglov



Introduction
Diophantine Equations

The semigroup of periods
Minimal and Primitive Periods

Elliptic elements of Γ

The modular group

The image of SL(2,Z) under κ is the modular group Γ. The
group operation in Γ is a composition of Möbius transforms.
There are exactly two matrices X = A and X = −A satisfying
κ(X ) = µ. The mapping κ : A 7−→ µ is a homomorphism of
groups with the kernel {I,−I}, I being the identity matrix. The
composition of κ and m is

P m−→ SL(2,Z)
κ−→ Γ . (15)

It is well known that Γ is generated by two transformations
S(z) = −1/z and T (z) = z + 1 satisfying the following relations

S2 = I (ST )3 = I . (16)

Sergey Khrushchev and Michael Tyaglov
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Theorem
For every A ∈ SL(2,Z) there is a period p ∈ P of only 1’s and
2’s such that m(p) = A. Hence κ ◦m(P) = Γ.

Definition
Given µ ∈ Γ we denote by P(µ) the set of all periods p ∈ P

such that κ ◦m(p) = µ. To indicate that x is the value of a
negative-regular continued fraction (3) with period
{b1,b2, . . . ,bn} we write for brevity

{b1,b2, . . . ,bn} 7→ x . (17)

We denote by Px the set of all periods in P satisfying (17).

Sergey Khrushchev and Michael Tyaglov
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The signature of a period

By (13) the sum Pn−1 + Qn is the trace of the matrix
m{b1,b2, . . . ,bn}. In what follows we denote by

εn = sign{b1, . . . ,bn} = ±1

the sign of Pn−1 + Qn. It is called the signature of {b1, . . . ,bn}.
By Theorem 4 if (3) converges to x then Pn−1 + Qn = 2εn. A
rational x can be recovered from its period {b1, . . . ,bn} by the
following formula:

x = −Qn − εn
Qn−1

. (18)
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Using operations of insertion of 1’s inside the period
{b1, . . . ,bn} one can obtain infinitely many other periods in
P(µ). These operations are based on simple identities:

−1
1 +

−1
1 +

−1
1 + w

= w ;

a +
−1
1 +

−1
1 +

−1
b + w

= a + b − 1 + w ;

a +
−1
1 +

−1
b + w

= a− 1 +
−1

b − 1 + w
,

(19)

which being applied in proper places do not change the matrix
m{b1, . . . ,bn} of the period {b1, . . . ,bn}.
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Definition

A period {b1, . . . ,bn} in P(µ) is called primitive if it cannot be
shorten with the operations described in (19) so that a shorter
period remains in P(µ). A primitive period in Px is called
minimal if it has the shortest length from all primitive periods for
x.

For example

{1,2,5} 7→ −3 ; {1,2,3,4} 7→ −3 ; {1,2,2,b,3} 7→ −3 ,b 6= 1,

are different primitive periods for −3. The first period in the list
above is minimal. The signature of the first three periods is +1.
The signature of the last period in the list is −1 for every b 6= 1.
The list of primitive periods for 0 is given by

{b,1,1},b > 1 ; {1,1,2, . . .2︸ ︷︷ ︸
k

,1}, k = 1,2, . . . . (20)
Sergey Khrushchev and Michael Tyaglov
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Every µ ∈ Γ can be uniquely factored as:

µ = Sε(ST )α1S(ST )α2S · · ·S(ST )αr Sδ, (21)

where ε and δ take values 0 or 1 and αk equal 1 or 2.
Let P ′ be the set of all primitive periods. We prove that for every
µ ∈ Γ there is a unique primitive period p ∈ P ′ such that
µ = κ ◦m(p). In other words the set of all products of the form

ST b1ST b2 · · ·ST bn (22)

such that {b1, . . . ,bn} is a primitive period coincides with Γ. We
give a simple algorithm for the construction of the primitive
period of µ starting from the unique factorization (21) of µ and
vice versa. The primitive factorization (22) has an advantage
compared with the standard factorization (21). It is not only
much shorter but also has a nice interpretation in terms of
periodic negative-regular continued fractions.

Sergey Khrushchev and Michael Tyaglov
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Theorem

Let {b1, . . . ,bn} be the minimal period of a rational number x.
Then the primitive period of x of length n + k, k ≥ 1 is obtained
from

{b1, . . . ,bn︸ ︷︷ ︸,b1, . . . ,bn︸ ︷︷ ︸, . . . ,b1, . . . ,bn︸ ︷︷ ︸︸ ︷︷ ︸
k+1

}

by eliminating ‘interior’ 1’s using the last formula of (19).

Definition
All primitive periods obtained form the minimal period of a
rational number x by the algorithm of Theorem (9) are called
direct periods of x.

Sergey Khrushchev and Michael Tyaglov
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Theorem
A primitive period of a rational x 6= 0 is not direct if and only if
its signature equals the sign of x.

Theorem

If n is the length of the minimal period for a rational number
x 6= 0 then all not direct periods for x have the length n + 2 and
differ from each other only at one position of their period.
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Theorem

If x < 0 and −x = [a0; a1, . . . ,am] is the regular continued
fraction for −x then the length of the minimal period for x is
a0 + · · ·+ am.

For example for x = −5/3 with the minimal period {1,3,5,2}
we obtain

5
3

= 1 +
1
1 +

1
2

; 1 + 1 + 2 = 4 .
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For the Metius’ approximation to π

355
113

= 3 +
1
7 +

1
16

implying that the length of the period of −355/113 is
3 + 7 + 16 = 26. The length of the period of −103993/33102 is
318 since 103993/33102 is the convergent which follows next
to Metius’ convergent: 318 = 3 + 7 + 15 + 293.

Sergey Khrushchev and Michael Tyaglov



Introduction
Diophantine Equations

The semigroup of periods
Minimal and Primitive Periods

Elliptic elements of Γ

Alternatively, all minimal periods for negative rational numbers
can be obtained from the period {2} by induction. If a minimal
period {b1, . . . ,bn} of length n is already obtained then the
minimal periods of length n + 1 are

{1,b1+1,b2, . . . ,bn−1,bn+1} , {b1+1,b2, . . . ,bn−1,bn+1,1} .
(23)

Sergey Khrushchev and Michael Tyaglov
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The number of regular continued fractions [a0; a1, . . . ,am]
satisfying

a0 + a1 + · · ·+ am = n

equals 2n−1. This gives 2n−1 different negative rational
numbers with the length of the minimal period n. These rational
numbers are closely related to Farey’s series and the
Stern-Brocot tree. The formulas (23) are in fact equivalent to
the formulas used for the construction of the Calkin-Wilf tree.
From the point of view of the present paper the Stern-Brocot
tree describes and classifies rational regular continued fraction
whereas the Calkin-Wilf tree does the same for
negative-regular continued fractions.

Sergey Khrushchev and Michael Tyaglov
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Identities

Theorem

A periodic negative-regular continued fraction (3) diverges if
and only if at least one of the three following conditions holds:
(1) {b1, . . . ,bn} represents the identity;
(2) {b1, . . . ,bn,b1, . . . ,bn} represents the identity;
(3) {b1, . . . ,bn,b1, . . . ,bn,b1, . . . ,bn} represents the identity.

Sergey Khrushchev and Michael Tyaglov
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Elliptic elements

Theorem

Let P = {b1, . . . ,bn} be the minimal period of a rational number
x 6= −1 with marked element bk . Then the period P∗, in which
bk is replaced with bk − 2, corresponds to a Möbius transform
of order 2. Any Möbius transform of order 2 in the modular
group is obtained this way.

The correspondence in the Theorem is one-to-one.

Sergey Khrushchev and Michael Tyaglov
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Elliptic elements

Theorem

Let {b1, . . . ,bn} be a primitive period. The following conditions
are equivalent:
(1) {b1, . . . ,bn} is a period of an elliptic transform of order 2;
(2) there is a minimal period {b1, . . . ,bk + 2, . . . ,bn} of a

rational number such that bk + 2 is its marked element;
(3) the numerators and denominators of the last two

convergents for {b1, . . . ,bn} satisfy

PnQn−1 = −(Q2
n + 1) ;

Sergey Khrushchev and Michael Tyaglov
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Elliptic elements

Theorem

Let {b1, . . . ,bn} be a primitive period. The following conditions
are equivalent:
(1) {b1, . . . ,bn} is a period of an elliptic transform of order 2;
(2) The rational number |Pn/Qn| can be represented as the

value of a symmetric regular continued fraction∣∣∣∣Pn

Qn

∣∣∣∣ = a0 +
1
a1 +···+

1
a2d

,ak = a2d−k , k = 0, . . .2d .

Sergey Khrushchev and Michael Tyaglov
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Elliptic elements

Theorem

Let P = {b1, . . . ,bn} be the minimal period of a rational number
x 6= −1 with marked element bk . Then the period P∗, in which
bk is replaced with bk − 1, corresponds to a Möbius transform
of order 3. Any Möbius transform of order 3 in the modular
group is obtained this way.

Again the correspondence can be arranged in a one-to-one
way.

Sergey Khrushchev and Michael Tyaglov
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Elliptic elements

Corollary

Let P = {b1, . . . ,bn} be the minimal period of a rational
number. Then there is an element bk > 3 in the period P such
that the double of the new period with bk := bk − 2 represents
the identity.

This corollary shows that a small modification in one term of the
period (namely, subtracting 2) may easily ruin the convergence.

Sergey Khrushchev and Michael Tyaglov
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