Periods of Negative-regular Continued Fractions. Rational numbers.

Sergey Khrushchev and Michael Tyaglov

International School of Economics
Kazakh-British Technical University
Almaty, Kazakhstan and
Shnaghai University, China

09/11/2012 / OSU

Outline

(9) Introduction
(2) Diophantine Equations
(3) The semigroup of periods
(4) Minimal and Primitive Periods
(5) Elliptic elements of Γ

In 1882 Smith included in his 'Algebra' a formula for the convergents of the following continued fraction

$$
\begin{equation*}
\underbrace{\frac{1}{1-\frac{1}{4}-\frac{1}{1}-\frac{1}{4}-\ldots} \cdots}_{n}=\frac{2 n}{n+1} \longrightarrow 2 \text { as } n \rightarrow \infty, \tag{1}
\end{equation*}
$$

These continued fractions go back to Chebyshev

$$
\begin{align*}
& \frac{2}{\pi} \int_{-1}^{1} \frac{\sqrt{1-x^{2}}}{z-x} d x=2\left(z-\sqrt{z^{2}-1}\right)= \\
& =\frac{2}{2 z}-\frac{1}{2 z}-\frac{1}{2 z}-\cdots=\frac{1}{z}-\frac{1 / 2}{2 z}-\frac{1}{2 z}-\cdots \frac{1}{z}-\frac{1}{4 z}-\frac{1}{z}-\frac{1}{4 z}-\cdots . \tag{2}
\end{align*}
$$

We study pure periodic negative-regular continued fractions

$$
\begin{equation*}
x=\underbrace{\frac{-1}{b_{1}}+\frac{-1}{b_{2}}+\cdots+\frac{-1}{b_{n}}}_{n}+\underbrace{\frac{-1}{b_{1}}+\frac{-1}{b_{2}}+\cdots+\frac{-1}{b_{n}}}_{n}+\cdots, \tag{3}
\end{equation*}
$$

representing rational numbers x where $b_{1}, b_{2}, \ldots, b_{n}$ are positive integers.

Convergence

It is easy to see that for every real x

$$
\begin{equation*}
x=\frac{-1}{3}+\frac{-1}{1}+\frac{-1}{2}+\frac{-1}{2}+\frac{-1}{1+x} \tag{4}
\end{equation*}
$$

The corresponding periodic continued fraction

$$
\begin{equation*}
\underbrace{\frac{-1}{3}+\frac{-1}{1}+\frac{-1}{2}+\frac{-1}{2}+\frac{-1}{1}}_{5}+\underbrace{\frac{-1}{3}+\frac{-1}{1}+\frac{-1}{2}+\frac{-1}{2}+\frac{-1}{1}}_{5}+\cdots \tag{5}
\end{equation*}
$$

obviously diverges. Indeed, putting $x=0$ in (4) we obtain that $P_{5 n} / Q_{5 n}=0$ for every n. Putting $x=-1 / 3$ in (4) we obtain that $P_{5 n+1} / Q_{5 n+1}=-1 / 3$ for every n. The same is true for any period representing the identity.

Tietze Theorem

Theorem (Tietze)

Let $\left\{a_{k}\right\}_{k \geq 1}$ be a sequence of nonzero integers and $\left\{b_{k}\right\}_{k \geq 1}$ be a sequence of positive integers such that $b_{k} \geq\left|a_{k}\right|$ for every k and $b_{k} \geq\left|a_{k}\right|+1$ if $a_{k+1}<0$. Then the continued fraction

$$
\frac{a_{1}}{b_{1}}+\frac{a_{2}}{b_{2}}+\cdots+\frac{a_{n}}{b_{n}}+\cdots
$$

converges to an irrational number except for the case if $a_{k}<0$ and $b_{k}=\left|a_{k}\right|+1$ starting from some place.

Corollary

Corollary

If $\left\{b_{1}, b_{2}, \ldots, b_{n}\right\}$ is a period of a negative-regular continued fraction representing a rational number x then $b_{k}=1$ for some k.

Negative Integers

Euler related partial sums of series to convergents of continued fractions:

$$
\sum_{k=0}^{n-1} c_{k}=\frac{c_{0}}{1}-\frac{c_{1} / c_{0}}{1+c_{1} / c_{0}}-\frac{c_{2} / c_{1}}{1+c_{2} / c_{1}-\ldots-\frac{c_{n-1} / c_{n-2}}{1+c_{n-1} / c_{n-2}} . . . ~ . ~}
$$

Let now $c_{0}=c_{1}=\cdots=c_{n}=-1$. Then

$$
\begin{equation*}
-n=\frac{-1}{1}+\underbrace{\frac{-1}{2}+\ldots+\frac{-1}{2}}_{n-2}+\frac{-1}{2+n-n} . \tag{6}
\end{equation*}
$$

Iterating we obtain for negative integers $-n, n \geq 2$:
$-n=\frac{-1}{1}+\underbrace{\frac{-1}{2}+\cdots+\frac{-1}{2}}_{n-2}+\frac{-1}{n+2}+\frac{-1}{1}+\underbrace{\frac{-1}{2}+\cdots+\frac{-1}{2}}_{n-2}+\frac{-1}{n+2}+$

Convergence of Periodic Fractions

Theorem

Every rational number is the value of a convergent pure periodic negative-regular continued fraction.

A construction of minimal periods

$$
x=\frac{-1}{a_{1}}+\frac{-1}{a_{2}}+\cdots+\frac{-1}{a_{k}}, \quad \frac{1}{x}=\frac{-1}{c_{1}}+\frac{-1}{c_{2}}+\cdots+\frac{-1}{c_{m}}
$$

These expansions are obtained by a generalized Euclidean algorithm. Then

$$
\begin{equation*}
x \oplus s\left(x^{-1}\right) \stackrel{\text { def }}{=}\left\{a_{1}, a_{2}, \ldots, a_{k-1}, a_{k}+c_{m}, c_{m-1}, \ldots, c_{1}\right\} \mapsto x \tag{8}
\end{equation*}
$$

is the minimal period for x. For example
$-n=\frac{-1}{1}+\underbrace{\frac{-1}{2}+\cdots+\frac{-1}{2}}_{n-1}, \quad \frac{1}{-n}=\frac{-1}{n} \Longrightarrow\{1, \underbrace{2, \ldots, 2}_{n-2}, 2+n\} \mapsto-n$.

Consider the following rational function $R_{n}\left(x_{1}, x_{2}, \ldots, x_{n}\right)$:

$$
x_{1} x_{2} \cdots x_{n-1} x_{n}\left(1-\frac{1}{x_{1} x_{2}}\right) \cdots\left(1-\frac{1}{x_{n-1} x_{n}}\right)\left(1-\frac{1}{x_{n} x_{1}}\right)
$$

and denote by $D_{n}\left(x_{1}, \ldots, x_{n}\right)$ the polynomial part $\left[R_{n}\left(x_{1}, \ldots x_{n}\right)\right]$ of R_{n}. Then $x_{1}=b_{1}, x_{2}=b_{2}, \ldots, x_{n}=b_{n}$ is a solution to the Diophantine equation

$$
\begin{equation*}
D_{n}\left(x_{1}, \ldots, x_{n}\right)= \pm 2 \tag{9}
\end{equation*}
$$

The solutions to (9) not assigned to the periods of rational numbers correspond to the identities of the type (4). For example for $n=2,3$, 4 we have:

$$
\begin{aligned}
& D_{2}=b_{1} b_{2}-2 \\
& D_{3}=b_{1} b_{2} b_{3}-b_{1}-b_{2}-b_{3} \\
& D_{4}=b_{1} b_{2} b_{3} b_{4}-b_{1} b_{2}-b_{2} b_{3}-b_{3} b_{4}-b_{4} b_{1}+2
\end{aligned}
$$

$n=1$	2	3	4	5
\{2\}	\{2,2\}	\{2,2,2\}	\{2, 2, 2, 2\}	\{2, 2, 2, 2, 2\}
	\{1,4\}	\{1, 2, 5\}	\{1,2,2, 6\}	\{1, 1, 4, 1, 1\}
		$\{1,3,3\}$	\{1,2,5,3\}	$\{1,2,1,3,1\}$
		$\{1,1, b\}$	$\{1,3,1,6\}$	$\{1,2,2,2,7\}$
			\{1,2,3,4\}	$\{1,2,6,2,3\}$
			\{1,4, 1, 4\}	\{1, 3, 1, 3, 6\}
			$\{1,2,1, b\}$	\{1, 2, 3, 1, 7\}
			\{1,2, b, 2\}	$\{1,2,3,5,3\}$
				$\{1,2,2,5,4\}$
				$\{1,2,6,1,4\}$
				$\{1,2,2,3,5\}$
				\{1, 2, 4, 3, 3\}
				$\{1,3,1,4,4\}$
				$\{1,2,4,1,5\}$

Convergence of Periodic Fractions

Theorem

A rational x is the value of a convergent periodic negative-integer continued fraction

$$
\begin{equation*}
x=\underbrace{\frac{-1}{b_{1}}+\frac{-1}{b_{2}}+\cdots+\frac{-1}{b_{n}}}_{n}+\underbrace{\frac{-1}{b_{1}}+\frac{-1}{b_{2}}+\cdots+\frac{-1}{b_{n}}}_{n}+\cdots \tag{10}
\end{equation*}
$$

if and only if $Q_{n-1} \neq 0$ and $P_{n-1}+Q_{n}= \pm 2$. In particular, it converges to $x=0$ if and only if $Q_{n-1} \neq 0$ and $P_{n}=0$; if $Q_{n-1}=0$ and $P_{n} \neq 0$, then the periodic continued fraction diverges to ∞; if $Q_{n-1}=0$ and $P_{n}=0$, then the periodic continued fraction diverges.

It is easy to see that if (10) converges to x then x is a root of the characteristic quadratic equation

$$
\begin{equation*}
Q_{n-1} X^{2}+\left(Q_{n}-P_{n-1}\right) X-P_{n}=0 \tag{11}
\end{equation*}
$$

of the period $\left\{b_{1}, \ldots, b_{n}\right\}$. As Theorem 4 shows the convergence of (10) under assumption $P_{n-1}+Q_{n}= \pm 2$ is determined by the entries of the matrix

$$
A=\left(\begin{array}{ll}
P_{n-1} & P_{n} \\
Q_{n-1} & Q_{n}
\end{array}\right)
$$

The equation (11) can be rewritten as

$$
\begin{equation*}
x=\frac{-1}{b_{1}}+\frac{-1}{b_{2}}+\cdots+\frac{-1}{b_{n}+x}=\frac{P_{n-1} x+P_{n}}{Q_{n-1} x+Q_{n}} . \tag{12}
\end{equation*}
$$

Corollary

The continued fraction (10) with $P_{n-1}+Q_{n}= \pm 2$ diverges if and only if its period represents the identity.

Proof.

By the determinant identity for continued fractions

$$
P_{n} Q_{n-1}-P_{n-1} Q_{n}=-1 .
$$

If (10) diverges then $P_{n-1} Q_{n}=1$ by Theorem 4. It follows that $P_{n-1}=Q_{n}= \pm 1$. Hence the period $\left\{b_{1}, b_{2}, \ldots, b_{n}\right\}$ represents the identity by (12). The converse arguments were illustrated on the example of (5).

Multiplication of periods

We consider periods $\left\{b_{1}, b_{2}, \ldots, b_{n}\right\}$ as well-ordered finite sets of not necessarily different positive integers. The set \mathbb{P} of all periods is a semigroup with respect to the following operation:

$$
\left\{b_{1}, b_{2}, \ldots, b_{n}\right\} \cdot\left\{c_{1}, c_{2}, \ldots, c_{k}\right\}=\left\{b_{1}, \ldots, b_{n}, c_{1}, \ldots, c_{k}\right\}
$$

By (12) the mapping

$$
\mathfrak{m}\left\{b_{1}, b_{2}, \ldots, b_{n}\right\}=\left(\begin{array}{cc}
P_{n-1} & P_{n} \tag{13}\\
Q_{n-1} & Q_{n}
\end{array}\right)
$$

is a homomorphism of \mathbb{P} into the special linear group $S L(2, \mathbb{Z})$ of all 2×2 matrices A with integer entries satisfying $\operatorname{det}(A)=1$. The kernel $\operatorname{Ker}(\mathfrak{m})$ of \mathfrak{m} consists of all periods representing the identity. Every $A \in S L(2, \mathbb{Z})$ determines the Möbius transform

$$
\begin{equation*}
\kappa(A)(z)=\mu(z)=\frac{a z+b}{c z} \tag{14}
\end{equation*}
$$

The modular group

The image of $S L(2, \mathbb{Z})$ under κ is the modular group Γ. The group operation in Γ is a composition of Möbius transforms. There are exactly two matrices $X=A$ and $X=-A$ satisfying $\kappa(X)=\mu$. The mapping $\kappa: A \longmapsto \mu$ is a homomorphism of groups with the kernel $\{I,-I\}, I$ being the identity matrix. The composition of κ and \mathfrak{m} is

$$
\begin{equation*}
\mathbb{P} \xrightarrow{\mathfrak{m}} S L(2, \mathbb{Z}) \xrightarrow{\kappa} \Gamma . \tag{15}
\end{equation*}
$$

It is well known that Γ is generated by two transformations $S(z)=-1 / z$ and $T(z)=z+1$ satisfying the following relations

$$
\begin{equation*}
S^{2}=I \quad(S T)^{3}=l \tag{16}
\end{equation*}
$$

Theorem

For every $A \in S L(2, \mathbb{Z})$ there is a period $p \in \mathbb{P}$ of only 1 's and 2 's such that $\mathfrak{m}(p)=A$. Hence $\kappa \circ \mathfrak{m}(\mathbb{P})=\Gamma$.

Definition

Given $\mu \in \Gamma$ we denote by $\mathbb{P}(\mu)$ the set of all periods $p \in \mathbb{P}$ such that $\kappa \circ \mathfrak{m}(p)=\mu$. To indicate that x is the value of a negative-regular continued fraction (3) with period $\left\{b_{1}, b_{2}, \ldots, b_{n}\right\}$ we write for brevity

$$
\begin{equation*}
\left\{b_{1}, b_{2}, \ldots, b_{n}\right\} \mapsto x \tag{17}
\end{equation*}
$$

We denote by \mathbb{P}_{x} the set of all periods in \mathbb{P} satisfying (17).

The signature of a period

By (13) the sum $P_{n-1}+Q_{n}$ is the trace of the matrix $\mathfrak{m}\left\{b_{1}, b_{2}, \ldots, b_{n}\right\}$. In what follows we denote by

$$
\epsilon_{n}=\operatorname{sign}\left\{b_{1}, \ldots, b_{n}\right\}= \pm 1
$$

the sign of $P_{n-1}+Q_{n}$. It is called the signature of $\left\{b_{1}, \ldots, b_{n}\right\}$. By Theorem 4 if (3) converges to x then $P_{n-1}+Q_{n}=2 \epsilon_{n}$. A rational x can be recovered from its period $\left\{b_{1}, \ldots, b_{n}\right\}$ by the following formula:

$$
\begin{equation*}
x=-\frac{Q_{n}-\epsilon_{n}}{Q_{n-1}} \tag{18}
\end{equation*}
$$

Using operations of insertion of 1's inside the period $\left\{b_{1}, \ldots, b_{n}\right\}$ one can obtain infinitely many other periods in $\mathbb{P}(\mu)$. These operations are based on simple identities:

$$
\begin{align*}
& \frac{-1}{1}+\frac{-1}{1}+\frac{-1}{1+w}=w \\
& a+\frac{-1}{1}+\frac{-1}{1}+\frac{-1}{b+w}=a+b-1+w \tag{19}\\
& a+\frac{-1}{1}+\frac{-1}{b+w}=a-1+\frac{-1}{b-1+w}
\end{align*}
$$

which being applied in proper places do not change the matrix $\mathfrak{m}\left\{b_{1}, \ldots, b_{n}\right\}$ of the period $\left\{b_{1}, \ldots, b_{n}\right\}$.

Definition

A period $\left\{b_{1}, \ldots, b_{n}\right\}$ in $\mathbb{P}(\mu)$ is called primitive if it cannot be shorten with the operations described in (19) so that a shorter period remains in $\mathbb{P}(\mu)$. A primitive period in \mathbb{P}_{x} is called minimal if it has the shortest length from all primitive periods for x.

For example

$$
\{1,2,5\} \mapsto-3 ;\{1,2,3,4\} \mapsto-3 ;\{1,2,2, b, 3\} \mapsto-3, b \neq 1,
$$

are different primitive periods for -3 . The first period in the list above is minimal. The signature of the first three periods is +1 . The signature of the last period in the list is -1 for every $b \neq 1$. The list of primitive periods for 0 is given by

$$
\begin{equation*}
\{b, 1,1\}, b>1 ;\{1,1, \underbrace{2, \ldots 2}, 1\}, k=1,2, \ldots \tag{20}
\end{equation*}
$$

Every $\mu \in \Gamma$ can be uniquely factored as:

$$
\begin{equation*}
\mu=S^{\epsilon}(S T)^{\alpha_{1}} S(S T)^{\alpha_{2}} S \cdots S(S T)^{\alpha_{r}} S^{\delta} \tag{21}
\end{equation*}
$$

where ϵ and δ take values 0 or 1 and α_{k} equal 1 or 2 .
Let \mathbb{P}^{\prime} be the set of all primitive periods. We prove that for every $\mu \in \Gamma$ there is a unique primitive period $p \in \mathbb{P}^{\prime}$ such that $\mu=\kappa \circ \mathfrak{m}(p)$. In other words the set of all products of the form

$$
\begin{equation*}
S T^{b_{1}} S T^{b_{2}} \cdots S T^{b_{n}} \tag{22}
\end{equation*}
$$

such that $\left\{b_{1}, \ldots, b_{n}\right\}$ is a primitive period coincides with Γ. We give a simple algorithm for the construction of the primitive period of μ starting from the unique factorization (21) of μ and vice versa. The primitive factorization (22) has an advantage compared with the standard factorization (21). It is not only much shorter but also has a nice interpretation in terms of periodic negative-regular continued fractions.

Theorem

Let $\left\{b_{1}, \ldots, b_{n}\right\}$ be the minimal period of a rational number x. Then the primitive period of x of length $n+k, k \geq 1$ is obtained from

$$
\{\underbrace{b_{1}, \ldots, b_{n}}_{k+1}, \underbrace{b_{1}, \ldots, b_{n}}, \ldots, \underbrace{b_{1}, \ldots, b_{n}}\}
$$

by eliminating 'interior' 1 's using the last formula of (19).

Definition

All primitive periods obtained form the minimal period of a rational number x by the algorithm of Theorem (9) are called direct periods of x.

Theorem

A primitive period of a rational $x \neq 0$ is not direct if and only if its signature equals the sign of x.

Theorem

If n is the length of the minimal period for a rational number $x \neq 0$ then all not direct periods for x have the length $n+2$ and differ from each other only at one position of their period.

Theorem

If $x<0$ and $-x=\left[a_{0} ; a_{1}, \ldots, a_{m}\right]$ is the regular continued fraction for $-x$ then the length of the minimal period for x is $a_{0}+\cdots+a_{m}$.

For example for $x=-5 / 3$ with the minimal period $\{1,3,5,2\}$ we obtain

$$
\frac{5}{3}=1+\frac{1}{1}+\frac{1}{2} ; \quad 1+1+2=4
$$

For the Metius' approximation to π

$$
\frac{355}{113}=3+\frac{1}{7}+\frac{1}{16}
$$

implying that the length of the period of $-355 / 113$ is $3+7+16=26$. The length of the period of $-103993 / 33102$ is 318 since $103993 / 33102$ is the convergent which follows next to Metius' convergent: $318=3+7+15+293$.

Alternatively, all minimal periods for negative rational numbers can be obtained from the period $\{2\}$ by induction. If a minimal period $\left\{b_{1}, \ldots, b_{n}\right\}$ of length n is already obtained then the minimal periods of length $n+1$ are
$\left\{1, b_{1}+1, b_{2}, \ldots, b_{n-1}, b_{n}+1\right\}, \quad\left\{b_{1}+1, b_{2}, \ldots, b_{n-1}, b_{n}+1,1\right\}$.
(23)

The number of regular continued fractions $\left[a_{0} ; a_{1}, \ldots, a_{m}\right]$ satisfying

$$
a_{0}+a_{1}+\cdots+a_{m}=n
$$

equals 2^{n-1}. This gives 2^{n-1} different negative rational numbers with the length of the minimal period n. These rational numbers are closely related to Farey's series and the Stern-Brocot tree. The formulas (23) are in fact equivalent to the formulas used for the construction of the Calkin-Wilf tree. From the point of view of the present paper the Stern-Brocot tree describes and classifies rational regular continued fraction whereas the Calkin-Wilf tree does the same for negative-regular continued fractions.

Identities

Theorem

A periodic negative-regular continued fraction (3) diverges if and only if at least one of the three following conditions holds:
(1) $\left\{b_{1}, \ldots, b_{n}\right\}$ represents the identity;
(2) $\left\{b_{1}, \ldots, b_{n}, b_{1}, \ldots, b_{n}\right\}$ represents the identity;
(3) $\left\{b_{1}, \ldots, b_{n}, b_{1}, \ldots, b_{n}, b_{1}, \ldots, b_{n}\right\}$ represents the identity.

Elliptic elements

Theorem

Let $P=\left\{b_{1}, \ldots, b_{n}\right\}$ be the minimal period of a rational number $x \neq-1$ with marked element b_{k}. Then the period P^{*}, in which b_{k} is replaced with $b_{k}-2$, corresponds to a Möbius transform of order 2. Any Möbius transform of order 2 in the modular group is obtained this way.

The correspondence in the Theorem is one-to-one.

Elliptic elements

Theorem

Let $\left\{b_{1}, \ldots, b_{n}\right\}$ be a primitive period. The following conditions are equivalent:
(1) $\left\{b_{1}, \ldots, b_{n}\right\}$ is a period of an elliptic transform of order 2 ;
(2) there is a minimal period $\left\{b_{1}, \ldots, b_{k}+2, \ldots, b_{n}\right\}$ of a rational number such that $b_{k}+2$ is its marked element;
(3) the numerators and denominators of the last two convergents for $\left\{b_{1}, \ldots, b_{n}\right\}$ satisfy

$$
P_{n} Q_{n-1}=-\left(Q_{n}^{2}+1\right)
$$

Elliptic elements

Theorem

Let $\left\{b_{1}, \ldots, b_{n}\right\}$ be a primitive period. The following conditions are equivalent:
(1) $\left\{b_{1}, \ldots, b_{n}\right\}$ is a period of an elliptic transform of order 2;
(2) The rational number $\left|P_{n} / Q_{n}\right|$ can be represented as the value of a symmetric regular continued fraction

$$
\left|\frac{P_{n}}{Q_{n}}\right|=a_{0}+\frac{1}{a_{1}}+\cdots+\frac{1}{a_{2 d}}, a_{k}=a_{2 d-k}, k=0, \ldots 2 d .
$$

Elliptic elements

> Theorem
> Let $P=\left\{b_{1}, \ldots, b_{n}\right\}$ be the minimal period of a rational number $x \neq-1$ with marked element b_{k}. Then the period P^{*}, in which b_{k} is replaced with $b_{k}-1$, corresponds to a Möbius transform of order 3. Any Möbius transform of order 3 in the modular group is obtained this way.

Again the correspondence can be arranged in a one-to-one way.

Elliptic elements

Corollary

Let $P=\left\{b_{1}, \ldots, b_{n}\right\}$ be the minimal period of a rational number. Then there is an element $b_{k}>3$ in the period P such that the double of the new period with $b_{k}:=b_{k}-2$ represents the identity.

This corollary shows that a small modification in one term of the period (namely, subtracting 2) may easily ruin the convergence.

