Periods of Negative-regular Continued Fractions. Rational numbers.

Sergey Khrushchev and Michael Tyaglov

International School of Economics Kazakh-British Technical University Almaty, Kazakhstan and Shnaghai University, China

09/11/2012 / OSU

ヘロト 人間 ト ヘヨト ヘヨト

æ

Sergey Khrushchev and Michael Tyaglov

- The semigroup of periods
- 4 Minimal and Primitive Periods

・ロト ・ 一下・ ・ ヨト・

In 1882 Smith included in his 'Algebra' a formula for the convergents of the following continued fraction

$$\underbrace{\frac{1}{1-\frac{1}{4}-\frac{1}{1-\frac{1}{4}-\cdots}\cdots}_{n}}_{n} = \frac{2n}{n+1} \longrightarrow 2 \text{ as } n \to \infty, \qquad (1)$$

・ロン・(理)・ ・ ヨン・

3

These continued fractions go back to Chebyshev

$$\frac{2}{\pi} \int_{-1}^{1} \frac{\sqrt{1-x^2}}{z-x} dx = 2(z-\sqrt{z^2-1}) =$$

$$= \frac{2}{2z} - \frac{1}{2z} - \frac{1}{2z} - \cdots = \frac{1}{z} - \frac{1/2}{2z} - \frac{1}{2z} - \cdots + \frac{1}{z} - \frac{1}{4z} - \frac{1}{z} - \frac{1}{4z} - \cdots$$
(2)

We study pure periodic negative-regular continued fractions

$$x = \underbrace{\frac{-1}{b_1} + \frac{-1}{b_2} + \dots + \frac{-1}{b_n}}_{n} + \underbrace{\frac{-1}{b_1} + \frac{-1}{b_2} + \dots + \frac{-1}{b_n}}_{n} + \dots, \quad (3)$$

◆□ > ◆□ > ◆豆 > ◆豆 > -

æ

representing rational numbers x where $b_1, b_2, ..., b_n$ are positive integers.

Convergence

It is easy to see that for every real x

$$x = \frac{-1}{3} + \frac{-1}{1} + \frac{-1}{2} + \frac{-1}{2} + \frac{-1}{1+x}.$$
 (4)

The corresponding periodic continued fraction

$$\underbrace{\frac{-1}{3} + \frac{-1}{1} + \frac{-1}{2} + \frac{-1}{2} + \frac{-1}{1}}_{5} + \underbrace{\frac{-1}{3} + \frac{-1}{1} + \frac{-1}{2} + \frac{-1}{2} + \frac{-1}{1}}_{5} + \cdots$$
(5)

obviously diverges. Indeed, putting x = 0 in (4) we obtain that $P_{5n}/Q_{5n} = 0$ for every *n*. Putting x = -1/3 in (4) we obtain that $P_{5n+1}/Q_{5n+1} = -1/3$ for every *n*. The same is true for any period representing the identity.

Tietze Theorem

Theorem (Tietze)

Let $\{a_k\}_{k\geq 1}$ be a sequence of nonzero integers and $\{b_k\}_{k\geq 1}$ be a sequence of positive integers such that $b_k \geq |a_k|$ for every kand $b_k \geq |a_k| + 1$ if $a_{k+1} < 0$. Then the continued fraction

$$\frac{a_1}{b_1}+\frac{a_2}{b_2}+\cdots+\frac{a_n}{b_n}+\cdots$$

converges to an irrational number except for the case if $a_k < 0$ and $b_k = |a_k| + 1$ starting from some place.

ヘロト 人間 とくほとくほと

Corollary

If $\{b_1, b_2, ..., b_n\}$ is a period of a negative-regular continued fraction representing a rational number x then $b_k = 1$ for some k.

イロト イポト イヨト イヨト

3

Negative Integers

Euler related partial sums of series to convergents of continued fractions:

$$\sum_{k=0}^{n-1} c_k = \frac{c_0}{1} - \frac{c_1/c_0}{1+c_1/c_0} - \frac{c_2/c_1}{1+c_2/c_1} - \dots - \frac{c_{n-1}/c_{n-2}}{1+c_{n-1}/c_{n-2}}.$$

Let now $c_0 = c_1 = \cdots = c_n = -1$. Then

$$-n = \frac{-1}{1} + \underbrace{\frac{-1}{2} + \dots + \frac{-1}{2}}_{n-2} + \frac{-1}{2+n-n}.$$
 (6)

Iterating we obtain for negative integers -n, $n \ge 2$:

$$-n = \frac{-1}{1} + \underbrace{\frac{-1}{2} + \cdots + \frac{-1}{2}}_{n-2} + \frac{-1}{n+2} + \frac{-1}{1} + \underbrace{\frac{-1}{2} + \cdots + \frac{-1}{2}}_{n+2} + \frac{-1}{n+2} + \cdots$$

Sergey Khrushchev and Michael Tyaglov

Convergence of Periodic Fractions

Theorem

Every rational number is the value of a convergent pure periodic negative-regular continued fraction.

イロト イポト イヨト イヨト

Sergey Khrushchev and Michael Tyaglov

A construction of minimal periods

$$x = \frac{-1}{a_1} + \frac{-1}{a_2} + \dots + \frac{-1}{a_k}, \quad \frac{1}{x} = \frac{-1}{c_1} + \frac{-1}{c_2} + \dots + \frac{-1}{c_m}.$$

These expansions are obtained by a generalized Euclidean algorithm. Then

$$x \oplus s(x^{-1}) \stackrel{\text{def}}{=} \{a_1, a_2, \dots, a_{k-1}, a_k + c_m, c_{m-1}, \dots, c_1\} \mapsto x$$
(8)

is the minimal period for x. For example

$$-n = \frac{-1}{1} + \underbrace{\frac{-1}{2} + \cdots + \frac{-1}{2}}_{n-1}, \quad \frac{1}{-n} = \frac{-1}{n} \implies \{1, \underbrace{2, \dots, 2}_{n-2}, 2+n\} \mapsto -n.$$

・ロト ・ 一下・ ・ ヨト・

-∃=->

Consider the following rational function $R_n(x_1, x_2, ..., x_n)$:

$$x_1x_2\cdots x_{n-1}x_n\left(1-\frac{1}{x_1x_2}\right)\cdots\left(1-\frac{1}{x_{n-1}x_n}\right)\left(1-\frac{1}{x_nx_1}\right)$$

and denote by $D_n(x_1, ..., x_n)$ the polynomial part $[R_n(x_1, ..., x_n)]$ of R_n . Then $x_1 = b_1, x_2 = b_2, ..., x_n = b_n$ is a solution to the Diophantine equation

$$D_n(x_1,\ldots,x_n)=\pm 2. \tag{9}$$

The solutions to (9) not assigned to the periods of rational numbers correspond to the identities of the type (4). For example for n = 2, 3, 4 we have:

$$D_{2} = b_{1}b_{2} - 2,$$

$$D_{3} = b_{1}b_{2}b_{3} - b_{1} - b_{2} - b_{3}$$

$$D_{4} = b_{1}b_{2}b_{3}b_{4} - b_{1}b_{2} - b_{2}b_{3} - b_{3}b_{4} - b_{4}b_{1} + 2.$$

<i>n</i> = 1	2	3	4	5
{2}	{2,2}	{2,2,2}	{2,2,2,2}	$\{2, 2, 2, 2, 2\}$
	$\{1,4\}$	{1,2,5}	{1,2,2,6}	$\{1, 1, 4, 1, 1\}$
		$\{1,3,3\}$	$\{1, 2, 5, 3\}$	$\{1, 2, 1, 3, 1\}$
		{1,1, <i>b</i> }	$\{1,3,1,6\}$	{1, 2, 2, 2, 7}
			{1,2,3,4}	{1,2,6,2,3}
			$\{1, 4, 1, 4\}$	{1,3,1,3,6}
			{1,2,1, <i>b</i> }	{1,2,3,1,7}
			$\{1, 2, b, 2\}$	$\{1, 2, 3, 5, 3\}$
				$\{1, 2, 2, 5, 4\}$
				$\{1, 2, 6, 1, 4\}$
				{1,2,2,3,5}
				{1, 2, 4, 3, 3}
				{1,3,1,4,4}
			< 1	,{ 1 , 2 , 4 , 1 , 5 },

∃ 𝒫𝔄𝔅

Sergey Khrushchev and Michael Tyaglov

Convergence of Periodic Fractions

Theorem

A rational x is the value of a convergent periodic negative-integer continued fraction

$$x = \underbrace{\frac{-1}{b_1} + \frac{-1}{b_2} + \dots + \frac{-1}{b_n}}_{n} + \underbrace{\frac{-1}{b_1} + \frac{-1}{b_2} + \dots + \frac{-1}{b_n}}_{n} + \dots$$
(10)

if and only if $Q_{n-1} \neq 0$ and $P_{n-1} + Q_n = \pm 2$. In particular, it converges to x = 0 if and only if $Q_{n-1} \neq 0$ and $P_n = 0$; if $Q_{n-1} = 0$ and $P_n \neq 0$, then the periodic continued fraction diverges to ∞ ; if $Q_{n-1} = 0$ and $P_n = 0$, then the periodic continued fraction diverges.

It is easy to see that if (10) converges to x then x is a root of the characteristic quadratic equation

$$Q_{n-1}X^2 + (Q_n - P_{n-1})X - P_n = 0$$
(11)

of the period $\{b_1, \ldots, b_n\}$. As Theorem 4 shows the convergence of (10) under assumption $P_{n-1} + Q_n = \pm 2$ is determined by the entries of the matrix

$$A = \begin{pmatrix} P_{n-1} & P_n \\ Q_{n-1} & Q_n \end{pmatrix} \, .$$

The equation (11) can be rewritten as

$$x = \frac{-1}{b_1} + \frac{-1}{b_2} + \dots + \frac{-1}{b_n + x} = \frac{P_{n-1}x + P_n}{Q_{n-1}x + Q_n}.$$
 (12)

イロト イポト イヨト イヨト

Corollary

The continued fraction (10) with $P_{n-1} + Q_n = \pm 2$ diverges if and only if its period represents the identity.

Proof.

By the determinant identity for continued fractions

$$P_n Q_{n-1} - P_{n-1} Q_n = -1$$
.

If (10) diverges then $P_{n-1}Q_n = 1$ by Theorem 4. It follows that $P_{n-1} = Q_n = \pm 1$. Hence the period $\{b_1, b_2, \ldots, b_n\}$ represents the identity by (12). The converse arguments were illustrated on the example of (5).

Multiplication of periods

We consider periods $\{b_1, b_2, \ldots, b_n\}$ as well-ordered finite sets of not necessarily different positive integers. The set \mathbb{P} of all periods is a semigroup with respect to the following operation:

$$\{b_1, b_2, \ldots, b_n\} \cdot \{c_1, c_2, \ldots, c_k\} = \{b_1, \ldots, b_n, c_1, \ldots, c_k\}.$$

By (12) the mapping

$$\mathfrak{m}\{b_1, b_2, \dots, b_n\} = \begin{pmatrix} P_{n-1} & P_n \\ Q_{n-1} & Q_n \end{pmatrix}$$
(13)

is a homomorphism of \mathbb{P} into the special linear group $SL(2,\mathbb{Z})$ of all 2×2 matrices A with integer entries satisfying det(A) = 1. The kernel Ker (\mathfrak{m}) of \mathfrak{m} consists of all periods representing the identity. Every $A \in SL(2,\mathbb{Z})$ determines the Möbius transform

$$\kappa(A)(z) = \mu(z) = \frac{az+b}{az+d} \longrightarrow (az+a)(14)$$

Sergey Khrushchev and Michael Tyaglov

The modular group

The image of $SL(2, \mathbb{Z})$ under κ is the modular group Γ . The group operation in Γ is a composition of Möbius transforms. There are exactly two matrices X = A and X = -A satisfying $\kappa(X) = \mu$. The mapping $\kappa : A \mapsto \mu$ is a homomorphism of groups with the kernel $\{I, -I\}$, *I* being the identity matrix. The composition of κ and \mathfrak{m} is

$$\mathbb{P} \stackrel{\mathfrak{m}}{\longrightarrow} SL(2,\mathbb{Z}) \stackrel{\kappa}{\longrightarrow} \Gamma.$$
(15)

It is well known that Γ is generated by two transformations S(z) = -1/z and T(z) = z + 1 satisfying the following relations

$$S^2 = I \quad (ST)^3 = I.$$
 (16)

ヘロン 人間 とくほど くほどう

Theorem

For every $A \in SL(2, \mathbb{Z})$ there is a period $p \in \mathbb{P}$ of only 1's and 2's such that $\mathfrak{m}(p) = A$. Hence $\kappa \circ \mathfrak{m}(\mathbb{P}) = \Gamma$.

Definition

Given $\mu \in \Gamma$ we denote by $\mathbb{P}(\mu)$ the set of all periods $p \in \mathbb{P}$ such that $\kappa \circ \mathfrak{m}(p) = \mu$. To indicate that x is the value of a negative-regular continued fraction (3) with period $\{b_1, b_2, \dots, b_n\}$ we write for brevity

$$\{b_1, b_2, \dots, b_n\} \mapsto x \,. \tag{17}$$

イロン イボン イヨン イヨン

We denote by \mathbb{P}_x the set of all periods in \mathbb{P} satisfying (17).

The signature of a period

By (13) the sum $P_{n-1} + Q_n$ is the trace of the matrix $\mathfrak{m}\{b_1, b_2, \dots, b_n\}$. In what follows we denote by

$$\epsilon_n = \operatorname{sign}\{b_1, \ldots, b_n\} = \pm 1$$

the sign of $P_{n-1} + Q_n$. It is called the signature of $\{b_1, \ldots, b_n\}$. By Theorem 4 if (3) converges to *x* then $P_{n-1} + Q_n = 2\epsilon_n$. A rational *x* can be recovered from its period $\{b_1, \ldots, b_n\}$ by the following formula:

$$x = -\frac{Q_n - \epsilon_n}{Q_{n-1}} \,. \tag{18}$$

Using operations of insertion of 1's inside the period $\{b_1, \ldots, b_n\}$ one can obtain infinitely many other periods in $\mathbb{P}(\mu)$. These operations are based on simple identities:

$$\frac{-1}{1} + \frac{-1}{1} + \frac{-1}{1+w} = w;$$

$$a + \frac{-1}{1} + \frac{-1}{1+w} + \frac{-1}{b+w} = a + b - 1 + w;$$
 (19)

$$a + \frac{-1}{1} + \frac{-1}{b+w} = a - 1 + \frac{-1}{b-1+w},$$

ヘロト 人間 とくほとく ほとう

which being applied in proper places do not change the matrix $\mathfrak{m}{b_1, \ldots, b_n}$ of the period ${b_1, \ldots, b_n}$.

Definition

A period $\{b_1, \ldots, b_n\}$ in $\mathbb{P}(\mu)$ is called primitive if it cannot be shorten with the operations described in (19) so that a shorter period remains in $\mathbb{P}(\mu)$. A primitive period in \mathbb{P}_x is called minimal if it has the shortest length from all primitive periods for *x*.

For example

$$\{1,2,5\}\mapsto -3$$
; $\{1,2,3,4\}\mapsto -3$; $\{1,2,2,b,3\}\mapsto -3$, $b
eq 1$,

are different primitive periods for -3. The first period in the list above is minimal. The signature of the first three periods is +1. The signature of the last period in the list is -1 for every $b \neq 1$. The list of primitive periods for 0 is given by

$$\{b, 1, 1\}, b > 1; \{1, 1, \underbrace{2, \ldots 2}_{,}, 1\}, k = 1, \underbrace{2, \ldots}_{a = 1}, \underbrace{2,$$

Every $\mu \in \Gamma$ can be uniquely factored as:

$$u = S^{\epsilon}(ST)^{\alpha_1} S(ST)^{\alpha_2} S \cdots S(ST)^{\alpha_r} S^{\delta}, \qquad (21)$$

where ϵ and δ take values 0 or 1 and α_k equal 1 or 2. Let \mathbb{P}' be the set of all primitive periods. We prove that for every $\mu \in \Gamma$ there is a *unique* primitive period $p \in \mathbb{P}'$ such that $\mu = \kappa \circ \mathfrak{m}(p)$. In other words the set of all products of the form

$$ST^{b_1}ST^{b_2}\cdots ST^{b_n} \tag{22}$$

such that $\{b_1, \ldots, b_n\}$ is a primitive period coincides with Γ . We give a simple algorithm for the construction of the primitive period of μ starting from the unique factorization (21) of μ and vice versa. The primitive factorization (22) has an advantage compared with the standard factorization (21). It is not only much shorter but also has a nice interpretation in terms of periodic negative-regular continued fractions.

Theorem

Let $\{b_1, \ldots, b_n\}$ be the minimal period of a rational number x. Then the primitive period of x of length n + k, $k \ge 1$ is obtained from

$$\underbrace{\{\underbrace{b_1,\ldots,b_n},\underbrace{b_1,\ldots,b_n}_{k+1},\ldots,\underbrace{b_1,\ldots,b_n}_{k+1}\}}_{k+1}\}$$

by eliminating 'interior' 1's using the last formula of (19).

Definition

All primitive periods obtained form the minimal period of a rational number x by the algorithm of Theorem (9) are called direct periods of x.

イロト イポト イヨト イヨト

э

Theorem

A primitive period of a rational $x \neq 0$ is not direct if and only if its signature equals the sign of *x*.

Theorem

If n is the length of the minimal period for a rational number $x \neq 0$ then all not direct periods for x have the length n + 2 and differ from each other only at one position of their period.

イロト イポト イヨト イヨト

Theorem

If x < 0 and $-x = [a_0; a_1, ..., a_m]$ is the regular continued fraction for -x then the length of the minimal period for x is $a_0 + \cdots + a_m$.

For example for x = -5/3 with the minimal period $\{1, 3, 5, 2\}$ we obtain

$$\frac{5}{3} = 1 + \frac{1}{1 + 2}; \quad 1 + 1 + 2 = \boxed{4}.$$

◆□▶ ◆□▶ ◆ヨ▶ ◆ヨ▶ 三 のなの

For the Metius' approximation to π

$$\frac{355}{113} = 3 + \frac{1}{7} + \frac{1}{16}$$

implying that the length of the period of -355/113 is 3 + 7 + 16 = 26. The length of the period of -103993/33102 is 318 since 103993/33102 is the convergent which follows next to Metius' convergent: 318 = 3 + 7 + 15 + 293.

Alternatively, all minimal periods for negative rational numbers can be obtained from the period {2} by induction. If a minimal period { b_1, \ldots, b_n } of length *n* is already obtained then the minimal periods of length *n* + 1 are

$$\{1, b_1+1, b_2, \dots, b_{n-1}, b_n+1\}, \{b_1+1, b_2, \dots, b_{n-1}, b_n+1, 1\}.$$
(23)

イロト イポト イヨト イヨト

э.

The number of regular continued fractions $[a_0; a_1, \ldots, a_m]$ satisfying

 $a_0 + a_1 + \cdots + a_m = n$

equals 2^{n-1} . This gives 2^{n-1} different negative rational numbers with the length of the minimal period *n*. These rational numbers are closely related to Farey's series and the Stern-Brocot tree. The formulas (23) are in fact equivalent to the formulas used for the construction of the Calkin-Wilf tree. From the point of view of the present paper the Stern-Brocot tree describes and classifies rational regular continued fraction whereas the Calkin-Wilf tree does the same for negative-regular continued fractions.

・ロ・ ・ 同・ ・ ヨ・ ・ ヨ・

э.

Theorem

A periodic negative-regular continued fraction (3) diverges if and only if at least one of the three following conditions holds:
(1) {b₁,..., b_n} represents the identity;
(2) {b₁,..., b_n, b₁,..., b_n} represents the identity;
(3) {b₁,..., b_n, b₁,..., b_n, b₁,..., b_n} represents the identity.

ヘロト 人間 とくほとくほとう

Elliptic elements

Theorem

Let $P = \{b_1, ..., b_n\}$ be the minimal period of a rational number $x \neq -1$ with marked element b_k . Then the period P^* , in which b_k is replaced with $b_k - 2$, corresponds to a Möbius transform of order 2. Any Möbius transform of order 2 in the modular group is obtained this way.

The correspondence in the Theorem is one-to-one.

Elliptic elements

Theorem

Let $\{b_1, \ldots, b_n\}$ be a primitive period. The following conditions are equivalent:

(1) $\{b_1, \ldots, b_n\}$ is a period of an elliptic transform of order 2;

- (2) there is a minimal period $\{b_1, \ldots, b_k + 2, \ldots, b_n\}$ of a rational number such that $b_k + 2$ is its marked element;
- (3) the numerators and denominators of the last two convergents for {b₁,..., b_n} satisfy

$$P_n Q_{n-1} = -(Q_n^2 + 1);$$

・ロン・西方・ ・ ヨン・ ヨン・

Elliptic elements

Theorem

Let $\{b_1, \ldots, b_n\}$ be a primitive period. The following conditions are equivalent:

(1) $\{b_1, \ldots, b_n\}$ is a period of an elliptic transform of order 2;

(2) The rational number $|P_n/Q_n|$ can be represented as the value of a symmetric regular continued fraction

$$\left|\frac{P_n}{Q_n}\right| = a_0 + \frac{1}{a_1} + \dots + \frac{1}{a_{2d}}, a_k = a_{2d-k}, k = 0, \dots 2d.$$

イロト イポト イヨト イヨト

Elliptic elements

Theorem

Let $P = \{b_1, ..., b_n\}$ be the minimal period of a rational number $x \neq -1$ with marked element b_k . Then the period P^* , in which b_k is replaced with $b_k - 1$, corresponds to a Möbius transform of order 3. Any Möbius transform of order 3 in the modular group is obtained this way.

Again the correspondence can be arranged in a one-to-one way.

イロト イポト イヨト イヨト

Elliptic elements

Corollary

Let $P = \{b_1, ..., b_n\}$ be the minimal period of a rational number. Then there is an element $b_k > 3$ in the period P such that the double of the new period with $b_k := b_k - 2$ represents the identity.

This corollary shows that a small modification in one term of the period (namely, subtracting 2) may easily ruin the convergence.

イロン イロン イヨン イヨン