Infinite family of solvable and integrable planar quantum systems

Alexander Turbiner

Instituto de Ciencias Nucleares, UNAM, Mexico

November 5, 2013
Let us consider the planar Hamiltonian $= \text{the Schroedinger operator}$

$$\mathcal{H} = -\Delta + V(x) \ , \quad x \in \mathbb{R}^2$$

The system is called *integrable*, if there exist one or two algebraically-independent operators I_i commuting with \mathcal{H},

$$[\mathcal{H}, I_i] = 0 \ , \quad i = 1, \ldots \ell$$

If $\ell = 1$ the system is called *completely-integrable*.

If $\ell = 2$, the system is called *superintegrable*

The central problem of quantum mechanics is to solve the Schroedinger equation

$$\mathcal{H}\Psi(x) = E\Psi(x) \ , \quad \Psi(x) \in L^2(\mathbb{R}^2)$$

Integrability does not help to solve the Schroedinger equation!
However, among integrable systems there are exactly-solvable systems.

Montreal conjecture (2001):

All superintegrable systems in \mathbb{R}^2 are exactly-solvable

(P. Tempesta, A.T., P. Winternitz)

A "source" of solvability!
To the best of my knowledge all known explicitly (algebraically) eigenfunctions have a form

$$\Psi(x) = (\text{polynomial in } \phi(x)) \times \text{factor}$$

with a non-singular function in the domain x as factor. No real exceptions are known so far ...
Formalism:

★
Take an infinite set of (constructively-defined) linear spaces \(\mathcal{V}_n, \ n = 0, 1 \ldots \). Assume they can be ordered

\[
\mathcal{V}_0 \subset \mathcal{V}_1 \subset \mathcal{V}_2 \subset \ldots \subset \mathcal{V}_n \subset \ldots \mathcal{V}
\]

Such a construction is called the *Infinite flag (filtration)* \(\mathcal{V} \)

★
If an operator \(E \) is such that

\[
E : \mathcal{V}_n \mapsto \mathcal{V}_n, \quad n = 0, 1, 2, \ldots
\]

then it implies that \(E \) preserves the flag \(\mathcal{V} \)

★
An operator \(E \) which preserves an infinite flag of (constructively-defined) finite-dimensional spaces \(\mathcal{V} \) is called the *Exactly-solvable operator with flag* \(\mathcal{V} \)
If operator Q preserves a single space \mathcal{V}_n (for some n) it is called the *Quasi-exactly-solvable operator* (we study spaces (flags) of polynomials only)

Example. The flag made from space

$$\mathcal{P}_n^{(2)} = \langle x_1^{p_1} x_2^{p_2} | 0 \leq p_1 + p_2 \leq n \rangle$$

$n = 0, 1, \ldots$. This flag is called $\mathcal{P}^{(2)}$

Differential Operator of finite order with polynomial coefficient functions is called the *Algebraic operator*
In the connection to flags of polynomials we introduce a notion ‘characteristic vector’.
Let us consider a flag made out of ”triangular” linear space of polynomials

\[\mathcal{P}^{(2)}_{n,\alpha} = \langle x_1^{p_1} x_2^{p_2} | 0 \leq \alpha_1 p_1 + \alpha_2 p_2 \leq n \rangle \]

where the “grades” \(\alpha \)'s are positive integer numbers and \(n = 0, 1, 2, \ldots \).

DEFINITION. Characteristic vector is a vector with components \(\alpha_i \)

\[\vec{\alpha} = (\alpha_1, \alpha_2) \]

hence, the characteristic vector for flag \(\mathcal{P}^{(2)} \)

\[\vec{\alpha}_0 = (1, 1) \]
gl_3-algebra

(almost degenerate or totally symmetric)

$(n, 0)$

\[J_i^- = \frac{\partial}{\partial x_i}, \quad i = 1, 2 \]
\[J_{ij}^0 = x_i \frac{\partial}{\partial x_j}, \quad i, j = 1, 2 \]
\[J^0 = x_1 \frac{\partial}{\partial x_1} + x_2 \frac{\partial}{\partial x_2} - n \]
\[J_i^+ = x_i J^0 = x_i \left(\sum_{j=1}^{2} x_j \frac{\partial}{\partial x_j} - n \right), \quad i = 1, 2 \]

▷ 9 generators
if $n = 0, 1, 2 \ldots$, fin-dim irreps

$$\mathcal{P}_n^{(2)} = \langle x_1^{p_1} x_2^{p_2} \mid 0 \leq p_1 + p_2 \leq n \rangle$$

Remark. The flag $\mathcal{P}^{(2)}$ is made out of finite-dimensional irreducible representation spaces of the algebra gl_3 taken in realization (\ast).

There exist other flags associated with irreducible, finite-dimensional representation spaces of the Lie algebras of differential (difference) operators.

Any operator made out of generators has finite-dimensional invariant subspace which is finite-dimensional irreducible representation space and visa versa.
Smorodinsky-Winternitz Potential ('67)

\[\mathcal{H}_{SW} = - \left(\frac{\partial^2}{\partial x_1^2} + \frac{\partial^2}{\partial x_2^2} \right) + \omega^2(x_1^2 + x_2^2) + \frac{\alpha}{x_1^2} + \frac{\beta}{x_2^2} \]

Variables are separated in Cartesian, polar and elliptic coordinates.
∃ two mutually-non-commuting integrals both of the 2nd order:
\textit{superintegrability!}

Ground state:

\[\psi_0 = x_1^a x_2^b e^{-\frac{\omega}{2}(x_1^2 + x_2^2)} , \quad E_0 = 2\omega(a + b + 1) \]

where \(\alpha = a(a - 1) \) and \(\beta = b(b - 1) \)
In polar coordinates \((x_1 = r \cos \varphi, x_2 = r \sin \varphi)\)

\[
\mathcal{H}_{SW}(x, y; \alpha, \beta) = -\partial_r^2 - \frac{1}{r} \partial_r - \frac{1}{r^2} \partial_\varphi^2 + \omega^2 r^2 + \frac{\alpha}{r^2 \cos^2 \varphi} + \frac{\beta}{r^2 \sin^2 \varphi}
\]

Configuration space: \(\varphi \in [0, \frac{\pi}{2}], \ r \in [0, \infty)\)

Modified isotropic 2D-harmonic oscillator in the 1st quadrant as configuration space
Variables are separated in polar coordinates.
∃ two mutually-\textbf{non}-commuting integrals of the 2nd and 4th orders:

\textbf{superintegrability!}

Ground state:

\[\Psi_0 = (x_1^2 - x_2^2)^a (x_1 x_2)^b e^{-\frac{\omega}{2} (x_1^2 + x_2^2)} \quad , \quad E_0 = 2\omega [2(a + b) + 1] \]

where \(\alpha = a(a - 1) \) and \(\beta = b(b - 1) \)
In polar coordinates \((x_1 = r \cos \varphi, x_2 = r \sin \varphi)\)

\[
\mathcal{H}_{BC_2}(x, y; \alpha, \beta) = -\partial_r^2 - \frac{1}{r} \partial_r - \frac{1}{r^2} \partial^2_\varphi + \omega^2 r^2 + \frac{4\alpha}{r^2 \cos^2 2\varphi} + \frac{4\beta}{r^2 \sin^2 2\varphi}
\]

Configuration space: \(\varphi \in [0, \frac{\pi}{4}]\), \(r \in [0, \infty)\)

Modified isotropic 2D-harmonic oscillator in sector \(\varphi \in [0, \frac{\pi}{4}]\) as configuration space
3-body Calogero model (A_2-rational model, Olshanetsky-Perelomov '77)

\[
\mathcal{H}_{A_2} = -\left(\frac{\partial^2}{\partial x_1^2} + \frac{\partial^2}{\partial x_2^2} + \frac{\partial^2}{\partial x_3^2} \right) + \omega^2(x_1^2 + x_2^2 + x_3^2) \\
+ \frac{9\beta}{4} \left(\frac{1}{(x_1 - x_2)^2} + \frac{1}{(x_1 - x_3)^2} + \frac{1}{(x_2 - x_3)^2} \right)
\]

After separation of c.m.s. out, the relative variables are separated in polar coordinates.
\[\exists\text{ two mutually-\textbf{non}-commuting integrals: of the 2nd and either 6th order if } \omega \neq 0 \text{ or 3rd order if } \omega = 0:\]

\[\text{superintegrability!}\]

Ground state:

\[
\Psi_0 = (x_1 - x_2)^b(x_1 - x_3)^b(x_2 - x_3)^b e^{-\frac{\omega}{2}(x_1^2+x_2^2+x_3^2)}, \quad E_0 = 2\omega(3b+1)
\]

where \(\beta = b(b - 1)\)
After separation of cms-coordinate $X = x_1 + x_2 + x_3$ in polar (relative) coordinates
\[
\frac{1}{\sqrt{2}}(x_1 - x_2) = r \cos \varphi , \quad \sqrt{\frac{3}{2}}(x_1 + x_2 - 2x_3) = r \sin \varphi ,
\]

\[
\tilde{H}_{A_2}(x, y; 0, \beta) = -\partial_r^2 - \frac{1}{r} \partial_r - \frac{1}{r^2} \partial_\varphi^2 + \omega^2 r^2 + \frac{9\beta}{r^2 \sin^2 3\varphi}
\]

Configuration space: $\varphi \in [0, \frac{\pi}{6}]$, $r \in [0, \infty)$
Wolfes model ’75 (G\textsubscript{2}-rational model, Olshanetsky-Perelomov ’77)

\[\mathcal{H}_{G_2} = \sum_{i=1}^{3} \left(-\frac{\partial^2}{\partial x_i^2} + \omega^2 x_i^2 \right) + \alpha \sum_{i<j} \frac{1}{(x_i - x_j)^2} + 3\beta \sum_{k<l, \ k,l\neq m} \frac{1}{(x_k + x_l - 2x_m)^2} \]

After separation of c.m.s. out the relative variables are separated in polar coordinates. \exists two mutually-\textbf{non}-commuting integrals of the 2nd and 6th orders: \textit{superintegrability}!

Ground state:

\[\Psi_0 = \prod_{i<j}^3 |x_i - x_j|^a \prod_{k<l, \ k,l\neq m}^3 |x_l + x_m - 2x_k|^b e^{-\frac{\omega}{2}(x_1^2 + x_2^2 + x_3^2)} \]

where \(\alpha = a(a - 1) \), \(\beta = b(b - 1) \)
After separation of cms-coordinate \(X = x_1 + x_2 + x_3 \) in polar (relative) coordinates

\[
\frac{1}{\sqrt{2}}(x_1 - x_2) = r \cos \varphi , \quad \sqrt{\frac{3}{2}}(x_1 + x_2 - 2x_3) = r \sin \varphi ,
\]

\[
\tilde{\mathcal{H}}_{G_2}(x, y; \alpha, \beta) = -\partial_r^2 - \frac{1}{r} \partial_r - \frac{1}{r^2} \partial^2_{\varphi} + \omega^2 r^2 + \frac{9\alpha}{r^2 \cos^2 3\varphi} + \frac{9\beta}{r^2 \sin^2 3\varphi}
\]

Configuration space: \(\varphi \in [0, \frac{\pi}{6}] , \ r \in [0, \infty) \)

Modified isotropic 2D-harmonic oscillator in sector \(\varphi \in [0, \frac{\pi}{6}] \) **as a configuration space.**
Natural generalization (F.Tremblay, A.T., P.Winternitz ’09, TTW model):

\[\mathcal{H}_k(x, y; \alpha, \beta) = -\partial_r^2 - \frac{1}{r} \partial_r - \frac{1}{r^2} \partial_\varphi^2 + \omega^2 r^2 + \frac{k^2 \alpha}{r^2 \cos^2 k \varphi} + \frac{k^2 \beta}{r^2 \sin^2 k \varphi} \]

- \(k = 1 \) – Smorodinsky-Winternitz
- \(k = 2 \) – \(BC_2 \)-rational
- \(k = 3 \) – Calogero (\(\alpha = 0 \)) and Wolfes (\(\alpha \neq 0 \))

Ground state:

\[\Psi_0 = r^{k(a+b)} \cos^a k \varphi \sin^b k \varphi \ e^{-\frac{\omega}{2} r^2} , \quad E_0 = 2 \omega [k(a + b) + 1] , \]

where \(\alpha = a(a - 1) \), \(\beta = b(b - 1) \).
(Super)integrability (for integer k)

First integral

$$X_k = -\partial_\phi^2 + \frac{k^2 \alpha}{\cos^2 k\phi} + \frac{k^2 \beta}{\sin^2 k\phi}$$

(separability in polar coordinates)

Second integral

$$Y_{2k} = P_{2k}(\partial_r, \partial_\phi; r, \phi)$$

is explicitly known at $k = 1, 2, 3$ and 4 (at $\alpha = 0$ for $k = 1 \ldots 6, 8$) but for integer $k > 4$?

(Dunkl operators formalism in polar coordinates: C Quesne, '96 – for $k = 3$ and odd $k > 3$, '10)

For even k – W Miller et al, '10
For rational $k = \frac{p}{q}$ – W Miller et al, ’10 - ’11

$$Y_{2k} = P_{2(p+q-1)}(\partial_r, \partial_\varphi; r, \varphi)$$

For all known cases

$$[X_k, Y_{2k}] \neq 0$$
(Super)integrability (for any real \(k > 0 \))

First integral

\[
X_k = -\partial^2 \varphi + \frac{k^2 \alpha}{\cos^2 k\varphi} + \frac{k^2 \beta}{\sin^2 k\varphi}
\]

(separability in polar coordinates)

Does a second integral exist?

interesting open question
Exact-solvability (for real $k > 0$)

Make a gauge rotation (similarity transformation)

$$ h = \psi_0^{-1}(\mathcal{H}_k - E_0)\psi_0 $$

and get the operator

$$ h = -\partial_r^2 + (2\omega r - \frac{2k(a + b) + 1}{r})\partial_r - \frac{1}{r^2}\partial_\varphi^2 - \frac{2k}{r^2}(-a \tan k\varphi + b \cot k\varphi)\partial_\varphi $$

for which the lowest eigenfunction is a constant with zero eigenvalue.

Separating variables

$$ \Psi_{N,n} = r^{2nk}L_N^{(k(2n+a+b))}(\omega r^2)P_n^{(a-1/2,b-1/2)}(\cos 2k\varphi)\psi_0 $$
\[E_{N,n} = 2\omega [2(N + nk) + k(a + b) + 1] \]

where \(N, n = 0, 1, 2, \ldots \).

Degeneracy:
\[N + kn = \text{integer} \]

At \(a, b = 0 \) it is the spectra of anisotropic harmonic oscillator in \(\mathbb{R}^2 \).

\[V(x, y) = \omega^2 x^2 + k^2 \omega^2 y^2 \]

Isotropic oscillator in the sector becomes anisotropic!
Exact-solvability (for integer k)

Make change of variables in h_k

$$t = r^2, \ u = r^{2k} \sin^2 k\varphi$$

- invariants of dihedral group $I_2(k)$.
It takes amazingly simple algebraic form:

$$h_k = -4t\partial_t^2 - 8kuv\partial_{tu} - 4k^2 t^{k-1} u\partial_u$$
$$+ 4[\omega t - (a + b)k - 1]\partial_t + [4\omega ku - 2k^2 (2b + 1)t^{k-1}]\partial_u$$

h_k has infinitely-many finite-dimensional invariant subspaces in polynomials

$$\mathcal{P}_n^{(k)} = (t^p u^q | 0 \leq (p + kq) \leq n), \ n = 0, 1, 2, \ldots$$

Flag:

$$\vec{\alpha} = (1, k)$$
The Lie algebra:

\[J^1 = \partial_t \]

\[J^2_n = t\partial_t - \frac{n}{3}, \quad J^3_n = su\partial_u - \frac{n}{3} \]

\[J^4_n = t^2\partial_t + stu\partial_u - nt \]

\[R_i = t^i\partial_u, \quad i = 0, 1, \ldots, s, \quad \mathcal{R}^{(s)} \equiv (R_0, \ldots, R_s) \]

they span non-semi-simple algebra \(gl(2, \mathbb{R}) \rtimes \mathcal{R}^{(s)} \) at \(s = 2, 3, \ldots \)

S. Lie, \(\sim1890 \) at \(n = 0 \), W. Miller ’68 and then
A. González-Lopéz, P Olver, N Kamran, ’91 at \(n \neq 0 \)
(Case 24, complete classification)

\[\mathcal{P}^{(s)}_n = (t^p u^q | 0 \leq (p + sq) \leq n) \]

common invariant subspace (reducible)
By adding

\[T_0^{(s)} = u \partial^s_t \]

to \(gl(2, \mathbb{R}) \times \mathcal{R}^{(s)} \), the action on \(\mathcal{P}_n^{(s)} \) gets irreducible.

Property:

\[
T_i^{(s)} = [J^4, [J^4, \ldots, [J^4, T_0^{(s)}], \ldots]] = u \partial_t^{s-i} J_0(J_0+1) \cdots (J_0+i-1), \]

\[i = 1, \ldots, s, \text{ all } T_i^{(s)} \text{ of the fixed degree } s, \quad J_0 = t \partial_t + su \partial_u - n \]

Nilpotency:

\[T_i^{(s)} = 0, \quad i > s. \]
Commutativity:

\[[T_i^{(s)}, T_j^{(s)}] = 0, \quad i, j = 0, \ldots, s, \quad \mathcal{T}^{(s)} \equiv (T_0^{(s)}, \ldots, T_s^{(s)}) \]

Decomposition:

\[\mathcal{T}^{(s)} \rtimes gl_2 \rtimes \mathcal{R}^{(s)} \]

Infinite-dimensional, \((2s + 6)\) generated algebra with \(\mathcal{P}_n^{(s)}\) irreps space \((\text{for } s = 1 \rightarrow gl(3))\)
At $s = k$,

$$\frac{-h_k}{4} = (J^2_n + 2J^3_n)J^1 + kJ^3 R_{k-1}$$

$$[(a + b)k + 1 + n]J^1 - \omega(J^2_n + J^3_n) + \frac{k}{6}[2n + 3k(2b + 1)]R_{k-1} - \frac{2\omega}{3}$$

Hence, $gl(2, \mathbb{R}) \ltimes \mathcal{R}^{(k)}$ is the hidden algebra,

Generators J^4 as well as $T^{(k)}$'s are absent in representation of h_k, hence, finite-dimensional invariant subspaces of h are finite-dimensional representation spaces of $gl(2, \mathbb{R}) \ltimes \mathcal{R}^{(k)}$.

Such a sequence of linear spaces $\mathcal{P}_n^{(k)}$, $n = 0, 1, \ldots$ forms the flag and h_k preserves this flag.
The flag is invariant with respect to weighted-projective transformations:

\[t \rightarrow t + A_0 \]

\[u \rightarrow u + B_k t^k + B_{k-1} t^{k-1} \ldots + B_0 \]

algebraic Hamiltonian remains algebraic!

A meaning of this invariance for the Hamiltonian is unclear so far ...
Integrability for integer k (algebraic forms)

There must exist the algebraic form of the integral X_k as well as \mathcal{V}_{2k} (all common eigenfunctions are polynomials)

Gauge rotation: $x_k = \psi_0^{-1}(X_k - c_k)\psi_0$

in (t, u) coordinates:

$$x_k = -4k^2u(t^k - u)\partial_u^2 - 4k^2[(b + \frac{1}{2})t^k - (a + b + 1)u]\partial_u$$

where $c_k = k^2(a + b)^2$ is the lowest eigenvalue.

In the generators

$$x_k = -4kJ^3R_k + 4J^3J^3 - 4k^2(b + \frac{1}{2})R_k + 4k(a + b)J^3$$

x_k preserves the same flag $(1, k)$ as the Hamiltonian h_k
Algebraic forms y_{2k} in x–space for Y_{2k} known explicitly for $k = 1, 2, 3, 4$ only - they contain $T_{0}^{(1,2,3,4)}$ generators, respectively.

Evidently, algebraic forms y_{2k} exist for any integer (rational) k - joint eigenfunctions with h_{k} are polynomials.

y_{2k} at $k = 1, 2, 3, 4$ preserves the same flag $(1, k)$ as for the Hamiltonian h_{k}

Is it true for any integer k? What about rational k?
Classical Mechanics

Hamiltonian

\[\mathcal{H}_k(x, y; \alpha, \beta) = p_1^2 + p_2^2 + \omega^2 r^2 + \frac{k^2 \alpha}{r^2 \cos^2 k \varphi} + \frac{k^2 \beta}{r^2 \sin^2 k \varphi} \]

likely superintegrable (yes, for rational \(k \))

\[X_k = L_3^2 + \frac{k^2 \alpha}{\cos^2 k \varphi} + \frac{k^2 \beta}{\sin^2 k \varphi} \]

\[Y_{2k} =? \]

For any real \(k > 0 \) all bounded trajectories are closed!

(periodic motion with period \(\frac{\pi}{2\omega} \) → isochronicity)
Quasi-Exact-solvability (for integer k)

$$H_{k}^{(qes)}(x, y; \alpha, \beta) = -\partial_{r}^{2} - \frac{1}{r} \partial_{r} - \frac{1}{r^2} \partial_{\varphi}^{2} + g^2 r^6 + 2g\omega r^4$$

$$+ [\omega^2 - 2g(2N + 2 + k(a + b))] r^2 + \frac{\alpha k^2}{r^2 \cos^2 k\varphi} + \frac{\beta k^2}{r^2 \sin^2 k\varphi}$$

where about $\left(\frac{N^2}{2k} + 1\right)$ eigenstates are known explicitly (algebraically). Their eigenfunctions have a form of a polynomial $p(t, u) \in \mathcal{P}_{N}^{(k)}$ multiplied by

$$\Psi_{0}^{(qes)} = r^{(a+b)k} \cos^{a} k\varphi \sin^{b} k\varphi e^{-\frac{\omega r^2}{2} - \frac{gr^4}{4}} \quad \text{(ground state at } N = 0)$$

$gl(2, \mathbb{R}) \ltimes \mathbb{R}^{k+1}$ is hidden algebra. Integrability? - Yes, X_k remains. Superintegrability? - "Y_{2k}"
Observation:

the operator

\[i_{\text{par}}^{(n)}(t, u) = \prod_{j=0}^{n} (\mathcal{J}^0(n) + j) \]

with

\[\mathcal{J}^0(n) = t \frac{\partial}{\partial t} + ku \frac{\partial}{\partial u} - n \]

commutes with \(h^{(qes)} = (\Psi_0^{(qes)})(-1) H_k^{(qes)}(x, y; \alpha, \beta) \Psi_0^{(qes)} \),

\[[h^{(qes)}(t, u), i^{(n)}_{\text{par}}(t, u)] : \mathcal{P}_N^{(k)} \mapsto 0 \]

hence, \(i^{(n)}_{\text{par}} \) is particular integral
From Harmonic Oscillator TTW to planar "Coulomb" problem
(S.Post, P.Winternitz '10)
(coupling constant metamorphosis)

\[\mathcal{H}_k^c(x, y; \alpha, \beta) = -\partial_\rho^2 - \frac{1}{\rho} \partial_\rho - \frac{1}{\rho^2} \partial_\theta^2 - \frac{Q}{\rho} + \frac{k^2 \alpha}{4 \rho^2 \cos^2 k\frac{\theta}{2}} + \frac{k^2 \beta}{4 \rho^2 \sin^2 k\frac{\theta}{2}} \]

Configuration space: \(\theta \in [0, \frac{\pi}{k}] \), \(\rho \in [0, \infty) \)

\[E_{N,n} = -\frac{Q^2}{[2(N + kn) + 1 + k(a + b)]^2}, \quad N, n = 0, 1, 2, \ldots \]

Ground state:

\[\psi_{0,0}^c = \rho^{(a+b)\frac{k}{2}} \cos^a\left(k\frac{\theta}{2}\right) \sin^b\left(k\frac{\theta}{2}\right) e^{-2\sqrt{-E_{0,0}}} \rho \]

where \(\alpha = a(a - 1) \), \(\beta = b(b - 1) \).
Eigenfunctions:

\[\Psi_{N,n}^c = \rho^{(2n+a+b)\frac{k}{2}} L_N^{((2n+a+b)k)} \left(2\sqrt{-E_{N,n}} \rho \right) P_n^{(a-1/2, b-1/2)} \left(-\cos k \theta \right) \]

\[\cos^a \left(k \frac{\theta}{2} \right) \sin^b \left(k \frac{\theta}{2} \right) e^{-2\sqrt{-E_{N,n}} \rho} \]

where \(N, n = 0, 1, 2, \ldots \)
\((N + kn)\) plays a role of principal quantum number

System remains superintegrable like *TTW* ...

\(k = 1 \) - Kalnins E G et al, ’96
\(k = 2 \) - Rodriguez M A et al, ’09
Quasi-Exact-solvability (for integer k) - planar "Coulomb" case

$$H_{k}^{c,(qes)}(x, y; \alpha, \beta) = -\partial_{\rho}^{2} - \frac{1}{\rho} \partial_{\rho} - \frac{1}{\rho^{2}} \partial_{\theta}^{2} + g^{2} \rho^{2} + 2g\omega\rho$$

$$+ \left[\omega^{2} - 2g(2N + 2 + k(a + b)) - Q \right] \rho + \frac{\alpha k^{2}}{\rho^{2} \cos^{2} k\theta} + \frac{\beta k^{2}}{\rho^{2} \sin^{2} k\theta}$$

where about $\left(\frac{N^{2}}{2k} + 1 \right)$ eigenstates are known explicitly (algebraically). Their eigenfunctions have a form of a polynomial $p(t, u) \in \mathcal{P}_{N}^{(k)}$ multiplied by

$$\psi_{0}^{c,(qes)} = \rho^{(a+b)k} \cos^{a} \left(\frac{k\theta}{2} \right) \sin^{b} \left(\frac{k\theta}{2} \right) e^{-\frac{\omega\rho}{2} - \frac{g\rho^{2}}{4}} \text{ (ground state at } N = 0)$$

$gl(2, \mathbb{R}) \ltimes \mathbb{R}^{k+1}$ is hidden algebra.
From continuous to discrete:

- Algebraic Differential operators h can be replaced by Difference Operators on uniform lattice with preservation of the property of existence of polynomial eigenfunctions

$$\frac{d}{dx} \rightarrow e^{\frac{d}{dx}}, \ x \rightarrow xe^{-\frac{d}{dx}}$$

(it is a Canonical Transformation, Y.F. Smirnov, A.T. ’95)

- Integrability is preserved also

- Hidden algebra continues to exist, it remains the same Lie algebra but realized by finite difference operators.

Similar holds for exponential lattice (C Chryssomalakos, A.T. ’01).

Lattices are taken in (t, u) coordinates not in Cartesian ones.
CONCLUSION

All known planar integrable and exactly-solvable Hamiltonians with rational potentials are members of a single continuous family!

• What about trigonometric ones, BC_2 and G_2, can they also be members of some continuous family? Elliptic BC_2?

• Classical case - Action-Angle representation (Gonera, 2010-11, Lechtenfeld et al, 2011-12)

• What is a meaning of the parameter k??

• Similar inf-dim fin-gen algebras with generalized Gauss decomposition diagram exist at \mathbb{R}^d, $d = 4, 6, 7, 8$
Journal of Physics A: Mathematical and Theoretical

Best Paper Prize 2011

is awarded to

Frédérick Tremblay, Alexander V Turbiner and Pavel Winternitz

An infinite family of solvable and integrable quantum systems on a plane

M T Batchelor
Editor-in-Chief

Rebecca Gillan
Publisher

IOP Publishing
Out \(\sim 1000\) papers published at *Journal of Physics A* in 2010 in all branches of physics from fluid mechanics to field/string theory **57 papers** were selected.

Out of **14 papers** selected in *Mathematical Physics* branch, **three papers** were closely related/inspired by TTW paper:

- **Families of classical subgroup separable superintegrable systems,** by E G Kalnins, J M Kress and W Miller Jr

- **Superintegrability of the Tremblay - Turbiner - Winternitz quantum Hamiltonians on a plane for odd \(k\),**

- **Periodic orbits for an infinite family of classical superintegrable systems,**
 by F Tremblay, A V Turbiner and P Winternitz