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Prelude

I Let S(j)n denote the classical Stirling number of the second
kind. This name was coined by Danish mathematician Niels
Nielson (1865-1931) in his book Die Gammafunktion
(Chelsea, New York, 1965).

I James Stirling (1692-1770) discovered properties of these
numbers and how they related to Newton series (series of the
form

f (z) = a0 + a1z+ a2z(z− 1) + a3z(z− 1)(z− 2) + . . . .)

In particular,

z1 = z

z2 = z+ z(z− 1)

z3 = z+ 3z(z− 1) + z(z− 1)(z− 2)

z4 = z+ 7z(z− 1) + 6z(z− 1)(z− 2) + z(z− 1)(z− 2)(z− 3)
etc.

The coeffi cients above are precisely the Stirling numbers of
the second kind.
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Picture of the cover of Stirling’s 1730 book:

First table showing Stirling numbers of the second kind - which
appears in Stirling’s 1730 book:



Legendre Polynomials
and Legendre-Stirling

Numbers

Lance L. Littlejohn

1. Prelude
2. Legendre’s
Differential Equation
2. Abstract
Left-Definite Theory
3. Legendre
Left-definite Analysis
4. Powers of the
Legendre Expression
& Legendre-Stirling
Numbers
5. Combinatorics

I The classic Laguerre differential expression in Lagrangian
symmetric form is

`[y](x) =
1

xαe−x

((
xα+1e−xy′(x)

)′
+ kxαe−xy(x)

)
;

here, k ≥ 0 is arbitrary but fixed.

I The rth Laguerre polynomial y = Lα
r (x) is a solution of

`[y](x) = (r+ k)y(x) (r = 0, 1, 2, . . .).

I With k = 1, the nth composite power of this expression is

1
xαe−x `

n[y](x) =
n

∑
j=0
(−1)j

(
S(j+1)

n+1 xα+je−xy(j)(x)
)(j)

.

I Question: Why take the nth power of this expression? This is
the key point in this lecture and we’ll explain ‘why’through a
study of the classic second-order Legendre differential
equation - since the answer will reveal a new set of
combinatorial numbers.
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Legendre’s Differential Equation

Believed to be a portrait of mathematician Adrien-Marie Legendre,
and depicted as such in the classic mathematics history books of
Eves and Struik .........
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Legendre’s Differential Equation

.........it was discovered in 2005, by two students at the University
of Strasbourg, that it is actually a portrait of Louis Legendre
(1755-1799), a figure who participated in the French Revolution.
He was no relation to Adrien-Marie Legendre.
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Legendre’s Differential Equation

Adrien-Marie Legendre (1752-1833)

This caricature is the only known ‘image’of A. M. Legendre; it was
discovered in the library of the Institut de France in Paris in 2008.
I `[y](x) = −

(
(1− x2)y′(x)

)′
+ ky(x)

(k ≥ 0 fixed; x ∈ (−1, 1); we choose k = 2)

I The rth degree Legendre polynomial y = Pr(x) satisfies

`[y] = λry

where λr = r(r+ 1) + 2. {Pr}∞
r=0 forms a complete

orthogonal set in L2(−1, 1).
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I E. C. Titchmarsh (1940) - first to analytically study this
expression in L2(−1, 1) [Eigenfunction expansions associated
with second-order differential equations I, Clarendon Press,
Oxford, 1962]

I W. N. Everitt (1980) - discussed the operator theory in
L2(−1, 1) and in H1, the (first) left-definite space [Legendre
polynomials and singular differential operators, LNM Volume
827, Springer-Verlag, New York, 1980, 83-106]
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I `[y] = −
(
(1− x2)y′(x)

)′
+ 2y(x) is in the limit-circle case

at both x = ±1 in L2(−1, 1) (so two appropriate BC’s
needed to generate a self-adjoint operator).

I Define A : D(A) ⊂ L2(−1, 1)→ L2(−1, 1) by

(A f )(x) = `[ f ](x) (a.e. x ∈ (−1, 1))

D(A) = { f : (−1, 1)→ C | f , f ′ ∈ ACloc(−1, 1);

f , `[ f ] ∈ L2(−1, 1); lim
x→±1

(1− x2) f ′(x) = 0}

= { f ∈ ∆ | lim
x→±1

(1− x2) f ′(x) = 0}.

I Glazman-Krein-Naimark theory ⇒ A is self-adjoint in
L2(−1, 1), {Pm}∞

m=0 ⊂ D(A), and

σ(A) = {m(m+ 1) + 2 | m ∈N0}.
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I For f , g ∈ ∆, and [α, β] ⊂ (−1, 1), we have Dirichlet’s
formula: ∫ β

α
`[ f ](t)g(t)dt

= −(1− t2) f ′(t)g(t) |βα

+
∫ β

α

(
(1− t2) f ′(t)g′(t) + 2 f (t)g(t)

)
dt

I It is tempting (but wrong!) to let α→ −1 and β→ +1;
indeed, it is easy to find f , g ∈ ∆ for which

lim
x→−1

(1− t2) f ′(t)g(t) and/or lim
x→+1

(1− t2) f ′(t)g(t)

do not exist.
I However, for f , g ∈ D(A), it can be shown that

(A f , g) =
∫ 1

−1

(
(1− t2) f ′(t)g′(t) + 2 f (t)g(t)

)
dt;

in particular,

(A f , f ) ≥ 2( f , f ) ( f ∈ D(A))
so that A is bounded below by 2I in L2(−1, 1).
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Abstract Left-Definite Theory

[L. L. Littlejohn and R. Wellman: A general left-definite theory for
certain self-adjoint operators with applications to differential
equations, J. Differential Equations, 181(2), 2002, 280-339.]

Definition: H = (V, (·, ·)): Hilbert space; A : D(A) ⊂ H → H
self-adjoint and bounded below by kI, k > 0; that is,
(Ax, x) ≥ k(x, x) (x ∈ D(A)); V1 linear manifold in V and (·, ·)1
is an inner product on V1 ×V1, and let H1 = (V1, (·, ·)1). We say
that H1 is a left-definite space associated with (H, A) if

I (1) H1 is a Hilbert space

I (2) D(A) is a subspace of V1

I (3) D(A) is dense in H1

I (4) (x, x)1 ≥ k(x, x) (x ∈ V1)

I (5) (x, y)1 = (Ax, y) (x ∈ D(A), y ∈ V1).
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is an inner product on V1 ×V1, and let H1 = (V1, (·, ·)1). We say
that H1 is a left-definite space associated with (H, A) if

I (1) H1 is a Hilbert space
I (2) D(A) is a subspace of V1

I (3) D(A) is dense in H1

I (4) (x, x)1 ≥ k(x, x) (x ∈ V1)

I (5) (x, y)1 = (Ax, y) (x ∈ D(A), y ∈ V1).
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Observation: If A is self-adjoint and bounded below by kI, then
Ar is self-adjoint and bounded below by kr I for each r > 0. We
can therefore generalize our Definition. We note, however, that the
literature contained no examples of “higher" left-definite spaces.

Definition: Let r > 0. Vr linear manifold in V and (·, ·)r is an
inner product on Vr ×Vr. Let Hr = (Vr, (·, ·)r). Hr is a r th

left-definite space associated with (H, A) if:

(1) Hr is a Hilbert space

(2) D(Ar) is a subspace of Vr

(3) D(Ar) is dense in Hr

(4) (x, x)r ≥ kr(x, x) (x ∈ Vr)

(5) (x, y)r = (Arx, y) (x ∈ D(Ar), y ∈ Vr).

Of course, existence of Hr is certainly in question at this point. In
a sense, the most important property is (5).
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Theorem Suppose A is a self-adjoint operator in H = (V, (·, ·))
that is bounded below by kI. Let r > 0 and

Vr := D(Ar/2)

(x, y)r := (Ar/2x, Ar/2y) (x, y ∈ Vr)

Hr := (Vr, (·, ·)r).

Then Hr is the unique rth left-definite space associated with
(H, A). Moreover,

I if A is bounded, then V = Vr and (·, ·) and (·, ·)r are
equivalent for all r > 0.

I if A is unbounded, then Vr is a proper subspace of V and, for
0 < r < s, Vs is a proper subspace of Vr; moreover, none of
the inner products (·, ·), (·, ·)r, or (·, ·)s are equivalent.

I Moreover, if {φn} is a (complete) set of orthogonal
eigenfunctions of A in H then they are also a (complete)
orthogonal set in each Hr.
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Left-definite operators

Definition: Suppose H = (V, (·, ·)) is a Hilbert space and A is a
self-adjoint operator in H that is bounded below by kI. Let r > 0
and Hr = (Vr, (·, ·)r) be the rth left-definite space associated with
(H, A). If there exists a self-adjoint operator Ar in Hr that is a
restriction of A; i.e.

Arx = Ax
x ∈ D(Ar) ⊂ D(A),

we call Ar an rth left-definite operator associated with (H, A).

Existence of Ar is also at question at this point.
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Theorem Suppose A is a self-adjoint operator in H = (V, (·, ·))
that is bounded below by kI. Let r > 0 and let Hr = (Vr, (·, ·)r)
be the rth left-definite space associated with (H, A). Define Ar in
Hr by

Arx = Ax (x ∈ D(Ar) := Vr+2.)

Then Ar is the unique left-definite operator associated with
(H, A). Moreover, σ(A) = σ(Ar). Furthermore,

I if A is bounded, then A = Ar for all r > 0.

I if A is unbounded, then D(Ar) is a proper subspace of D(A),
and when 0 < r < s, D(As) is a proper subspace of D(Ar).

I If {φn} is a (complete) set of eigenfunctions of A in H, then
they are also a (complete) orthogonal set of eigenfuctions of
each Ar.
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Legendre Left-definite Analysis

I Since the Legendre operator A defined earlier is bounded
below by 2I, there is an associated left-definite theory.

I Pleijel [1975, 1976] was the first to study the Legendre
expression `[·] in the first left-definite space H1 generated by
the inner product

( f , g)1 =
∫ 1

−1

(
(1− t2) f ′(t)g′(t) + 2 f (t)g(t)

)
dt.

He first observed that `[·] is limit-point at both x = ±1 in
H1.

I Everitt [1980] continued the study of `[·] in H1 and obtained
a self-adjoint operator A1 in

H1 = { f : (−1, 1)→ C | f ∈ ACloc(−1, 1);

f , (1− x2)1/2 f ′ ∈ L2(−1, 1)}

having {Pm}∞
m=0 as eigenfunctions.
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I Everitt, Maríc, Littlejohn [2002]: the first left-definite
operator A1 is explicitly given by

(A1 f )(x) = `[ f ](x) (a.e. x ∈ (−1, 1))

D(A1) = { f : (−1, 1)→ C | f , f ′, f ′′ ∈ ACloc(−1, 1);

(1− x2)3/2 f ′′′ ∈ L2(−1, 1)}.

I What are the left-definite spaces {Hr} and left-definite
operators {Ar} associated with A? Since {Hr}r>0 and the
inner products (·, ·)r are determined from the powers Ar of
the A, we can only determine these spaces and operators for
r ∈N.

[Everitt, Littlejohn, Wellman: Legendre polynomials,
Legendre-Stirling numbers, and the left-definite spectral
analysis of the Legendre differential expression, J. Comput.
Appl. Math.,148, 213-238, 2002. ]
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Powers of the Legendre Expression &
Legendre-Stirling Numbers

I The key: with `[·] denoting the Legendre differential
expression, we have, for each n ∈N,

`n[y](x) =
n

∑
j=0
(−1)j

(
cj(n)(1− x2)jy(j)(x)

)(j)
,

where, for j ∈ {1, 2, . . . , n},

cj(n) := PS(j+1)
n+1

where PS(j)n is, what we call, a Legendre-Stirling number.

I These Legendre-Stirling numbers are given explicitly by:

PS(j)n :=
j

∑
r=1
(−1)r+j (2r+ 1)(r2 + r)n

(r+ j+ 1)!(j− r)!
> 0.
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I For each n ∈N, we can compute the nth left-definite space

Hn = (Vn, (·, ·)n)

associated with the pair (L2(−1, 1), A). Indeed,

Vn = { f | f ∈ AC(n−1)
loc (−1, 1); (1− t2)n/2 f (n) ∈ L2(−1, 1)}

= D(An/2)

and

( f , g)n =
n

∑
j=0

cj(n)
∫ 1

−1
f (j)(t)g(j)(t)(1− t2)jdt.

In each Hn, the Legendre polynomials {Pm}∞
m=0 are a

complete orthogonal set.

I In particular, we obtain yet another characterization of the
domain of A :

D(A) = { f : (−1, 1)→ C | f , f ′ ∈ ACloc(−1, 1);

(1− t2) f ′′ ∈ L2(−1, 1)}.
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Combinatorics

[G. E. Andrews, W. Gawronski, L. L. Littlejohn, The
Legendre-Stirling Numbers, Discrete Math., 311 (2011),
1255-1272]

j/n n = 1 n = 2 n = 3 n = 4 n = 5 n = 6 n = 7

j = 1 1 1 1 1 1 1 1
j = 2 − 1 3 7 15 31 63
j = 3 − − 1 6 25 90 301
j = 4 − − − 1 10 65 350
j = 5 − − − − 1 15 140
j = 6 − − − − − 1 21
j = 7 − − − − − − 1

Stirling numbers of the second kind (e.g. S(4)6 = 65)

j/n n = 1 n = 2 n = 3 n = 4 n = 5 n = 6 n = 7

j = 1 1 2 4 8 16 32 64
j = 2 − 1 8 52 320 1936 11648
j = 3 − − 1 20 292 3824 47824
j = 4 − − − 1 40 1092 25664
j = 5 − − − − 1 70 3192
j = 6 − − − − − 1 112
j = 7 − − − − − − 1

Legendre-Stirling numbers (e.g. PS(4)6 = 1092)
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Property Stirling 2nd Kind Legendre-Stirling

VRR S(j)n = ∑n
r=j S(j−1)

r−1 jn−r PS(j)n = ∑n
r=j PS(j−1)

r−1 (j2 + j)n−r

RGF
j

∏
r=1

1
1−rx = ∑∞

n=0 S(j)n xn−j
j

∏
r=1

1
1−r(r+1)x = ∑∞

n=0 PS(j)n xn−j

TRR S(j)n = S(j−1)
n−1 + jS(j)n−1 PS(j)n = PS(j−1)

n−1 + j(j+ 1)PS(j)n−1

S(0)n = S(j)0 = 0; S(0)0 = 1 PS(0)n = PS(j)0 = 0; PS(0)0 = 1

HGF xn = ∑n
j=0 S(j)n (x)j , where xn = ∑n

j=0 PS(j)n 〈x〉j , where

(x)j = x(x− 1) . . . (x− j+ 1) 〈x〉j = x(x− 2) . . . (x− (j− 1)j))

1st Kind (x)n = ∑n
j=0 s(j)n xj 〈x〉n = ∑n

j=0 ps(j)n xj



Legendre Polynomials
and Legendre-Stirling

Numbers

Lance L. Littlejohn

1. Prelude
2. Legendre’s
Differential Equation
2. Abstract
Left-Definite Theory
3. Legendre
Left-definite Analysis
4. Powers of the
Legendre Expression
& Legendre-Stirling
Numbers
5. Combinatorics

Zoom in:

Property Stirling 2nd Kind Legendre-Stirling

RGF

j

∏
r=1

1
1−rx = ∑∞

n=0 S(j)n xn−j
j

∏
r=1

1
1−r(r+1)x = ∑∞

n=0 PS(j)n xn−j
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The classic Stirling numbers of the second kind {S(j)n } are
important in combinatorics:

I S(j)n is the number of ways of putting n objects into j
non-empty, indistinguishable boxes.

I What about the Legendre-Stirling numbers {PS(j)n }? Do they
count anything?

I Answer: Yes.
I To see what they count, first consider two copies of each
positive integer between 1 and n :

11, 12, 21, 22, . . . , n1, n2 (two different colors).

I For positive integers p, q ≤ n and i, j ∈ {1, 2}, we say that
pi > qj if p > q.
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I What about the Legendre-Stirling numbers {PS(j)n }? Do they
count anything?

I Answer: Yes.
I To see what they count, first consider two copies of each
positive integer between 1 and n :

11, 12, 21, 22, . . . , n1, n2 (two different colors).

I For positive integers p, q ≤ n and i, j ∈ {1, 2}, we say that
pi > qj if p > q.
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I To describe what the Legendre-Stirling number PS(j)n counts,
we describe two rules on how to fill j+ 1 ‘boxes’with the
numbers

{11, 12, 21, 22, . . . , n1, n2} :

1. the ‘zero box’is the only box that may be empty and it may
not contain both copies of any number.

2. the other j boxes are indistinguishable and each is non-empty;
for each such box, the smallest element in that box must
contain both copies (or colors) of this smallest number but no
other elements can have both copies in that box.

I Theorem: For n, j ∈N0 and j ≤ n, the Legendre-Stirling
number PS(j)n is the number of different distributions
according to the above two rules.

[G. E. Andrews and L. L. Littlejohn, A Combinatorial
Interpretation of the Legendre-Stirling Numbers, Proc. Amer.
Math. Soc., 137(8), 2009, 2581-2590.]
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