Legendre Polynomials and Legendre-Stirling Numbers

Lance L. Littlejohn

Mathematics Colloquium Ohio State University

April 29, 2014

Prelude

- Let $S_{n}^{(j)}$ denote the classical Stirling number of the second kind. This name was coined by Danish mathematician Niels Nielson (1865-1931) in his book Die Gammafunktion (Chelsea, New York, 1965).

Legendre Polynomials and Legendre-Stirling Numbers

Lance L. Littlejohn

1. Prelude
2. Legendre's

Differential Equation
2. Abstract

Left-Definite Theory
3. Legendre

Left-definite Analysis
4. Powers of the

Legendre Expression
\& Legendre-Stirling
Numbers
5. Combinatorics

Prelude

- Let $S_{n}^{(j)}$ denote the classical Stirling number of the second kind. This name was coined by Danish mathematician Niels Nielson (1865-1931) in his book Die Gammafunktion (Chelsea, New York, 1965).
- James Stirling (1692-1770) discovered properties of these numbers and how they related to Newton series (series of the form

$$
\left.f(z)=a_{0}+a_{1} z+a_{2} z(z-1)+a_{3} z(z-1)(z-2)+\ldots\right)
$$

In particular,

$$
\begin{aligned}
& z^{1}=z \\
& z^{2}=z+z(z-1) \\
& z^{3}=z+3 z(z-1)+z(z-1)(z-2) \\
& z^{4}=z+7 z(z-1)+6 z(z-1)(z-2)+z(z-1)(z-2)(z-3)
\end{aligned}
$$ etc.

The coefficients above are precisely the Stirling numbers of the second kind.

Picture of the cover of Stirling's 1730 book:

Metbodus Differentialis:

Legendre Polynomials and Legendre-Stirling Numbers

Lance L. Littlejohn

1. Prelude
2. Legendre's

Differential Equation
2. Abstract

Left-Definite Theory
3. Legendre

Left-definite Analysis
4. Powers of the

Legendre Expression
\& Legendre-Stirling
Numbers
5. Combinatorics

First table showing Stirling numbers of the second kind - which appears in Stirling's 1730 book:

Tabulam priorem.

1	1	1	1	1	I	1	1	1	88.
	1	3	7	15	3 I	63	127	255	8 cc .
		1	6	25	90	301	966	3025	\&c.
			1	10	65	350	1701	7770	8cc.
				1	15	140	1050	6951	\&c.
					1	21	266	2646	\&c.
						1	28	46 I	8 c .
							1	36	8c.
								1	\&c.
									88 cc

- The classic Laguerre differential expression in Lagrangian symmetric form is

$$
\ell[y](x)=\frac{1}{x^{\alpha} e^{-x}}\left(\left(x^{\alpha+1} e^{-x} y^{\prime}(x)\right)^{\prime}+k x^{\alpha} e^{-x} y(x)\right) ;
$$

here, $k \geq 0$ is arbitrary but fixed.

Legendre Polynomials and Legendre-Stirling Numbers

Lance L. Littlejohn

1. Prelude
2. Legendre's

Differential Equation
2. Abstract

Left-Definite Theory
3. Legendre

Left-definite Analysis
4. Powers of the

Legendre Expression \& Legendre-Stirling
Numbers
5. Combinatorics

- The classic Laguerre differential expression in Lagrangian symmetric form is

$$
\ell[y](x)=\frac{1}{x^{\alpha} e^{-x}}\left(\left(x^{\alpha+1} e^{-x} y^{\prime}(x)\right)^{\prime}+k x^{\alpha} e^{-x} y(x)\right) ;
$$

here, $k \geq 0$ is arbitrary but fixed.

- The $r^{\text {th }}$ Laguerre polynomial $y=L_{r}^{\alpha}(x)$ is a solution of

$$
\ell[y](x)=(r+k) y(x) \quad(r=0,1,2, \ldots) .
$$

- The classic Laguerre differential expression in Lagrangian symmetric form is

$$
\ell[y](x)=\frac{1}{x^{\alpha} e^{-x}}\left(\left(x^{\alpha+1} e^{-x} y^{\prime}(x)\right)^{\prime}+k x^{\alpha} e^{-x} y(x)\right) ;
$$

here, $k \geq 0$ is arbitrary but fixed.

- The $r^{\text {th }}$ Laguerre polynomial $y=L_{r}^{\alpha}(x)$ is a solution of

$$
\ell[y](x)=(r+k) y(x) \quad(r=0,1,2, \ldots) .
$$

- With $k=1$, the $n^{\text {th }}$ composite power of this expression is

$$
\frac{1}{x^{\alpha} e^{-x}} \ell^{n}[y](x)=\sum_{j=0}^{n}(-1)^{j}\left(S_{n+1}^{(j+1)} x^{\alpha+j} e^{-x} y^{(j)}(x)\right)^{(j)} .
$$

- The classic Laguerre differential expression in Lagrangian symmetric form is

$$
\ell[y](x)=\frac{1}{x^{\alpha} e^{-x}}\left(\left(x^{\alpha+1} e^{-x} y^{\prime}(x)\right)^{\prime}+k x^{\alpha} e^{-x} y(x)\right) ;
$$

here, $k \geq 0$ is arbitrary but fixed.

- The $r^{\text {th }}$ Laguerre polynomial $y=L_{r}^{\alpha}(x)$ is a solution of

$$
\ell[y](x)=(r+k) y(x) \quad(r=0,1,2, \ldots) .
$$

- With $k=1$, the $n^{\text {th }}$ composite power of this expression is

$$
\frac{1}{x^{\alpha} e^{-x}} \ell^{n}[y](x)=\sum_{j=0}^{n}(-1)^{j}\left(S_{n+1}^{(j+1)} x^{\alpha+j} e^{-x} y^{(j)}(x)\right)^{(j)}
$$

- Question: Why take the $n^{\text {th }}$ power of this expression? This is the key point in this lecture and we'll explain 'why' through a study of the classic second-order Legendre differential equation - since the answer will reveal a new set of combinatorial numbers.

Legendre's Differential Equation

Legendre Polynomials and Legendre-Stirling Numbers

1. Prelude
2. Legendre's

Differential Equation
2. Abstract

Left-Definite Theory
3. Legendre

Left-definite Analysis
4. Powers of the

Legendre Expression
\& Legendre-Stirling
Numbers
5. Combinatorics

Believed to be a portrait of mathematician Adrien-Marie Legendre, and depicted as such in the classic mathematics history books of Eves and Struik

Legendre's Differential Equation

1. Prelude
2. Legendre's

Differential Equation
2. Abstract

Left-Definite Theory
3. Legendre

Left-definite Analysis
4. Powers of the

Legendre Expression
\& Legendre-Stirling
Numbers
5. Combinatorics
it was discovered in 2005, by two students at the University of Strasbourg, that it is actually a portrait of Louis Legendre (1755-1799), a figure who participated in the French Revolution. He was no relation to Adrien-Marie Legendre.

Legendre's Differential Equation

Adrien-Marie Legendre (1752-1833)
This caricature is the only known 'image' of A. M. Legendre; it was discovered in the library of the Institut de France in Paris in 2008.

- $\ell[y](x)=-\left(\left(1-x^{2}\right) y^{\prime}(x)\right)^{\prime}+k y(x)$

$$
(k \geq 0 \text { fixed; } x \in(-1,1) ; \text { we choose } k=2)
$$

Legendre's Differential Equation

Adrien-Marie Legendre (1752-1833)
This caricature is the only known 'image' of A. M. Legendre; it was discovered in the library of the Institut de France in Paris in 2008.

- $\ell[y](x)=-\left(\left(1-x^{2}\right) y^{\prime}(x)\right)^{\prime}+k y(x)$
($k \geq 0$ fixed; $x \in(-1,1)$; we choose $k=2$)
- The $r^{\text {th }}$ degree Legendre polynomial $y=P_{r}(x)$ satisfies

$$
\ell[y]=\lambda_{r} y
$$

where $\lambda_{r}=r(r+1)+2 .\left\{P_{r}\right\}_{r=0}^{\infty}$ forms a complete orthogonal set in $L^{2}(-1,1)$.

- E. C. Titchmarsh (1940) - first to analytically study this expression in $L^{2}(-1,1)$ [Eigenfunction expansions associated with second-order differential equations I, Clarendon Press, Oxford, 1962]

Legendre Polynomials and Legendre-Stirling Numbers

Lance L. Littlejohn

1. Prelude
2. Legendre's

Differential Equation
2. Abstract

Left-Definite Theory
3. Legendre

Left-definite Analysis
4. Powers of the

Legendre Expression
\& Legendre-Stirling
Numbers
5. Combinatorics

- E. C. Titchmarsh (1940) - first to analytically study this expression in $L^{2}(-1,1)$ [Eigenfunction expansions associated with second-order differential equations I, Clarendon Press, Oxford, 1962]

- W. N. Everitt (1980) - discussed the operator theory in $L^{2}(-1,1)$ and in H_{1}, the (first) left-definite space [Legendre polynomials and singular differential operators, LNM Volume 827, Springer-Verlag, New York, 1980, 83-106]

2. Legendre's

Differential Equation
2. Abstract

Left-Definite Theory
3. Legendre

Left-definite Analysis
4. Powers of the

Legendre Expression
\& Legendre-Stirling
Numbers
5. Combinatorics

- $\ell[y]=-\left(\left(1-x^{2}\right) y^{\prime}(x)\right)^{\prime}+2 y(x)$ is in the limit-circle case at both $x= \pm 1$ in $L^{2}(-1,1)$ (so two appropriate BC's needed to generate a self-adjoint operator).

Legendre Polynomials and Legendre-Stirling Numbers

Lance L. Littlejohn

1. Prelude
2. Legendre's

Differential Equation
2. Abstract

Left-Definite Theory
3. Legendre

Left-definite Analysis
4. Powers of the

Legendre Expression
\& Legendre-Stirling
Numbers
5. Combinatorics

- $\ell[y]=-\left(\left(1-x^{2}\right) y^{\prime}(x)\right)^{\prime}+2 y(x)$ is in the limit-circle case at both $x= \pm 1$ in $L^{2}(-1,1)$ (so two appropriate BC's needed to generate a self-adjoint operator).
- Define $A: \mathcal{D}(A) \subset L^{2}(-1,1) \rightarrow L^{2}(-1,1)$ by

$$
\begin{aligned}
(A f)(x) & =\ell[f](x) \quad(\text { a.e. } x \in(-1,1)) \\
\mathcal{D}(A) & =\left\{f:(-1,1) \rightarrow \mathbb{C} \mid f, f^{\prime} \in A C_{\mathrm{loc}}(-1,1) ;\right. \\
& \left.f, \ell[f] \in L^{2}(-1,1) ; \lim _{x \rightarrow \pm 1}\left(1-x^{2}\right) f^{\prime}(x)=0\right\} \\
& =\left\{f \in \Delta \mid \lim _{x \rightarrow \pm 1}\left(1-x^{2}\right) f^{\prime}(x)=0\right\} .
\end{aligned}
$$

Legendre Polynomials and Legendre-Stirling Numbers

Lance L. Littlejohn

1. Prelude
2. Legendre's

Differential Equation
2. Abstract

Left-Definite Theory
3. Legendre

Left-definite Analysis
4. Powers of the

Legendre Expression
\& Legendre-Stirling
Numbers
5. Combinatorics

- $\ell[y]=-\left(\left(1-x^{2}\right) y^{\prime}(x)\right)^{\prime}+2 y(x)$ is in the limit-circle case at both $x= \pm 1$ in $L^{2}(-1,1)$ (so two appropriate BC's needed to generate a self-adjoint operator).
- Define $A: \mathcal{D}(A) \subset L^{2}(-1,1) \rightarrow L^{2}(-1,1)$ by

$$
\begin{aligned}
(A f)(x) & =\ell[f](x) \quad(\text { a.e. } x \in(-1,1)) \\
\mathcal{D}(A) & =\left\{f:(-1,1) \rightarrow \mathbb{C} \mid f, f^{\prime} \in A C_{\mathrm{loc}}(-1,1) ;\right. \\
& \left.f, \ell[f] \in L^{2}(-1,1) ; \lim _{x \rightarrow \pm 1}\left(1-x^{2}\right) f^{\prime}(x)=0\right\} \\
& =\left\{f \in \Delta \mid \lim _{x \rightarrow \pm 1}\left(1-x^{2}\right) f^{\prime}(x)=0\right\} .
\end{aligned}
$$

- Glazman-Krein-Naimark theory $\Rightarrow A$ is self-adjoint in $L^{2}(-1,1),\left\{P_{m}\right\}_{m=0}^{\infty} \subset \mathcal{D}(A)$, and

$$
\sigma(A)=\left\{m(m+1)+2 \mid m \in \mathbb{N}_{0}\right\} .
$$

- For $f, g \in \Delta$, and $[\alpha, \beta] \subset(-1,1)$, we have Dirichlet's formula:

$$
\begin{aligned}
& \int_{\alpha}^{\beta} \ell[f](t) \bar{g}(t) d t \\
& =-\left.\left(1-t^{2}\right) f^{\prime}(t) \bar{g}(t)\right|_{\alpha} ^{\beta} \\
& +\int_{\alpha}^{\beta}\left(\left(1-t^{2}\right) f^{\prime}(t) \bar{g}^{\prime}(t)+2 f(t) \bar{g}(t)\right) d t
\end{aligned}
$$

Legendre Polynomials and Legendre-Stirling Numbers

Lance L. Littlejohn

1. Prelude
2. Legendre's

Differential Equation
2. Abstract

Left-Definite Theory
3. Legendre

Left-definite Analysis
4. Powers of the

Legendre Expression
\& Legendre-Stirling
Numbers
5. Combinatorics

- For $f, g \in \Delta$, and $[\alpha, \beta] \subset(-1,1)$, we have Dirichlet's formula:

$$
\begin{aligned}
& \int_{\alpha}^{\beta} \ell[f](t) \bar{g}(t) d t \\
& =-\left.\left(1-t^{2}\right) f^{\prime}(t) \bar{g}(t)\right|_{\alpha} ^{\beta} \\
& +\int_{\alpha}^{\beta}\left(\left(1-t^{2}\right) f^{\prime}(t) \bar{g}^{\prime}(t)+2 f(t) \bar{g}(t)\right) d t
\end{aligned}
$$

- It is tempting (but wrong!) to let $\alpha \rightarrow-1$ and $\beta \rightarrow+1$; indeed, it is easy to find $f, g \in \Delta$ for which

$$
\lim _{x \rightarrow-1}\left(1-t^{2}\right) f^{\prime}(t) \bar{g}(t) \text { and } / \text { or } \lim _{x \rightarrow+1}\left(1-t^{2}\right) f^{\prime}(t) \bar{g}(t)
$$

do not exist.

- For $f, g \in \Delta$, and $[\alpha, \beta] \subset(-1,1)$, we have Dirichlet's formula:

$$
\begin{aligned}
& \int_{\alpha}^{\beta} \ell[f](t) \bar{g}(t) d t \\
& =-\left.\left(1-t^{2}\right) f^{\prime}(t) \bar{g}(t)\right|_{\alpha} ^{\beta} \\
& +\int_{\alpha}^{\beta}\left(\left(1-t^{2}\right) f^{\prime}(t) \bar{g}^{\prime}(t)+2 f(t) \bar{g}(t)\right) d t
\end{aligned}
$$

- It is tempting (but wrong!) to let $\alpha \rightarrow-1$ and $\beta \rightarrow+1$; indeed, it is easy to find $f, g \in \Delta$ for which

$$
\lim _{x \rightarrow-1}\left(1-t^{2}\right) f^{\prime}(t) \bar{g}(t) \text { and } / \text { or } \lim _{x \rightarrow+1}\left(1-t^{2}\right) f^{\prime}(t) \bar{g}(t)
$$

do not exist.

- However, for $f, g \in \mathcal{D}(A)$, it can be shown that

$$
(A f, g)=\int_{-1}^{1}\left(\left(1-t^{2}\right) f^{\prime}(t) \bar{g}^{\prime}(t)+2 f(t) \bar{g}(t)\right) d t
$$

in particular,

$$
(A f, f) \geq 2(f, f) \quad(f \in \mathcal{D}(A))
$$

so that A is bounded below by $2 I$ in $L^{2}(-1,1)$.

Abstract Left-Definite Theory

[L. L. Littlejohn and R. Wellman: A general left-definite theory for certain self-adjoint operators with applications to differential equations, J. Differential Equations, 181(2), 2002, 280-339.]
Definition: $H=(V,(\cdot, \cdot))$: Hilbert space; $A: \mathcal{D}(A) \subset H \rightarrow H$ self-adjoint and bounded below by $k I, k>0$; that is, $(A x, x) \geq k(x, x)(x \in \mathcal{D}(A)) ; V_{1}$ linear manifold in V and $(\cdot, \cdot)_{1}$ is an inner product on $V_{1} \times V_{1}$, and let $H_{1}=\left(V_{1},(\cdot, \cdot)_{1}\right)$. We say that H_{1} is a left-definite space associated with (H, A) if

- (1) H_{1} is a Hilbert space

1. Prelude

2. Legendre's

Differential Equation
2. Abstract

Left-Definite Theory
3. Legendre

Left-definite Analysis
4. Powers of the

Legendre Expression \& Legendre-Stirling Numbers
5. Combinatorics

Abstract Left-Definite Theory

[L. L. Littlejohn and R. Wellman: A general left-definite theory for certain self-adjoint operators with applications to differential equations, J. Differential Equations, 181(2), 2002, 280-339.]
Definition: $H=(V,(\cdot, \cdot))$: Hilbert space; $A: \mathcal{D}(A) \subset H \rightarrow H$ self-adjoint and bounded below by $k I, k>0$; that is, $(A x, x) \geq k(x, x)(x \in \mathcal{D}(A)) ; V_{1}$ linear manifold in V and $(\cdot, \cdot)_{1}$ is an inner product on $V_{1} \times V_{1}$, and let $H_{1}=\left(V_{1},(\cdot, \cdot)_{1}\right)$. We say that H_{1} is a left-definite space associated with (H, A) if

- (1) H_{1} is a Hilbert space
- (2) $\mathcal{D}(A)$ is a subspace of V_{1}

2. Abstract

Left-Definite Theory
3. Legendre

Left-definite Analysis
4. Powers of the

Legendre Expression

Abstract Left-Definite Theory

[L. L. Littlejohn and R. Wellman: A general left-definite theory for certain self-adjoint operators with applications to differential equations, J. Differential Equations, 181(2), 2002, 280-339.]
Definition: $H=(V,(\cdot, \cdot))$: Hilbert space; $A: \mathcal{D}(A) \subset H \rightarrow H$ self-adjoint and bounded below by $k I, k>0$; that is, $(A x, x) \geq k(x, x)(x \in \mathcal{D}(A)) ; V_{1}$ linear manifold in V and $(\cdot, \cdot)_{1}$ is an inner product on $V_{1} \times V_{1}$, and let $H_{1}=\left(V_{1},(\cdot, \cdot)_{1}\right)$. We say that H_{1} is a left-definite space associated with (H, A) if

- (1) H_{1} is a Hilbert space
- (2) $\mathcal{D}(A)$ is a subspace of V_{1}
- (3) $\mathcal{D}(A)$ is dense in H_{1}

2. Abstract

Left-Definite Theory
3. Legendre

Left-definite Analysis
4. Powers of the

Legendre Expression

Abstract Left-Definite Theory

[L. L. Littlejohn and R. Wellman: A general left-definite theory for certain self-adjoint operators with applications to differential equations, J. Differential Equations, 181(2), 2002, 280-339.]
Definition: $H=(V,(\cdot, \cdot))$: Hilbert space; $A: \mathcal{D}(A) \subset H \rightarrow H$ self-adjoint and bounded below by $k I, k>0$; that is, $(A x, x) \geq k(x, x)(x \in \mathcal{D}(A)) ; V_{1}$ linear manifold in V and $(\cdot, \cdot)_{1}$ is an inner product on $V_{1} \times V_{1}$, and let $H_{1}=\left(V_{1},(\cdot, \cdot)_{1}\right)$. We say that H_{1} is a left-definite space associated with (H, A) if

- (1) H_{1} is a Hilbert space
- (2) $\mathcal{D}(A)$ is a subspace of V_{1}
- (3) $\mathcal{D}(A)$ is dense in H_{1}
- (4) $(x, x)_{1} \geq k(x, x)\left(x \in V_{1}\right)$

2. Abstract

Left-Definite Theory
3. Legendre

Left-definite Analysis
4. Powers of the

Legendre Expression \& Legendre-Stirling Numbers
5. Combinatorics

Abstract Left-Definite Theory

[L. L. Littlejohn and R. Wellman: A general left-definite theory for certain self-adjoint operators with applications to differential equations, J. Differential Equations, 181(2), 2002, 280-339.]
Definition: $H=(V,(\cdot, \cdot))$: Hilbert space; $A: \mathcal{D}(A) \subset H \rightarrow H$ self-adjoint and bounded below by $k I, k>0$; that is, $(A x, x) \geq k(x, x)(x \in \mathcal{D}(A)) ; V_{1}$ linear manifold in V and $(\cdot, \cdot)_{1}$ is an inner product on $V_{1} \times V_{1}$, and let $H_{1}=\left(V_{1},(\cdot, \cdot)_{1}\right)$. We say that H_{1} is a left-definite space associated with (H, A) if

- (1) H_{1} is a Hilbert space
- (2) $\mathcal{D}(A)$ is a subspace of V_{1}
- (3) $\mathcal{D}(A)$ is dense in H_{1}
- (4) $(x, x)_{1} \geq k(x, x)\left(x \in V_{1}\right)$
- (5) $(x, y)_{1}=(A x, y)\left(x \in \mathcal{D}(A), y \in V_{1}\right)$.

2. Abstract

Left-Definite Theory
3. Legendre

Left-definite Analysis
4. Powers of the

Legendre Expression \& Legendre-Stirling Numbers
5. Combinatorics

Observation: If A is self-adjoint and bounded below by $k I$, then A^{r} is self-adjoint and bounded below by $k^{r} I$ for each $r>0$. We can therefore generalize our Definition. We note, however, that the literature contained no examples of "higher" left-definite spaces.

Definition: Let $r>0$. V_{r} linear manifold in V and $(\cdot, \cdot)_{r}$ is an inner product on $V_{r} \times V_{r}$. Let $H_{r}=\left(V_{r},(\cdot, \cdot)_{r}\right)$. H_{r} is a $r^{\text {th }}$ left-definite space associated with (H, A) if:
(1) H_{r} is a Hilbert space
(2) $\mathcal{D}\left(A^{r}\right)$ is a subspace of V_{r}
(3) $\mathcal{D}\left(A^{r}\right)$ is dense in H_{r}
(4) $(x, x)_{r} \geq k^{r}(x, x)\left(x \in V_{r}\right)$
(5) $(x, y)_{r}=\left(A^{r} x, y\right)\left(x \in \mathcal{D}\left(A^{r}\right), y \in V_{r}\right)$.

Of course, existence of H_{r} is certainly in question at this point. In a sense, the most important property is (5).

Theorem Suppose A is a self-adjoint operator in $H=(V,(\cdot, \cdot))$ that is bounded below by $k I$. Let $r>0$ and

$$
\begin{gathered}
V_{r}:=\mathcal{D}\left(A^{r / 2}\right) \\
(x, y)_{r}:=\left(A^{r / 2} x, A^{r / 2} y\right) \quad\left(x, y \in V_{r}\right) \\
H_{r}:=\left(V_{r},(\cdot, \cdot)_{r}\right) .
\end{gathered}
$$

Then H_{r} is the unique $r^{t h}$ left-definite space associated with (H, A). Moreover,

- if A is bounded, then $V=V_{r}$ and (\cdot, \cdot) and $(\cdot, \cdot)_{r}$ are equivalent for all $r>0$.

Theorem Suppose A is a self-adjoint operator in $H=(V,(\cdot, \cdot))$ that is bounded below by $k I$. Let $r>0$ and

$$
\begin{gathered}
V_{r}:=\mathcal{D}\left(A^{r / 2}\right) \\
(x, y)_{r}:=\left(A^{r / 2} x, A^{r / 2} y\right) \quad\left(x, y \in V_{r}\right) \\
H_{r}:=\left(V_{r},(\cdot, \cdot)_{r}\right) .
\end{gathered}
$$

Then H_{r} is the unique $r^{t h}$ left-definite space associated with (H, A). Moreover,

- if A is bounded, then $V=V_{r}$ and (\cdot, \cdot) and $(\cdot, \cdot)_{r}$ are equivalent for all $r>0$.
- if A is unbounded, then V_{r} is a proper subspace of V and, for $0<r<s, V_{s}$ is a proper subspace of V_{r}; moreover, none of the inner products $(\cdot, \cdot),(\cdot, \cdot)_{r}$, or $(\cdot, \cdot)_{s}$ are equivalent.

Theorem Suppose A is a self-adjoint operator in $H=(V,(\cdot, \cdot))$ that is bounded below by $k I$. Let $r>0$ and

$$
\begin{gathered}
V_{r}:=\mathcal{D}\left(A^{r / 2}\right) \\
(x, y)_{r}:=\left(A^{r / 2} x, A^{r / 2} y\right) \quad\left(x, y \in V_{r}\right) \\
H_{r}:=\left(V_{r},(\cdot, \cdot)_{r}\right) .
\end{gathered}
$$

Then H_{r} is the unique $r^{\text {th }}$ left-definite space associated with (H, A). Moreover,

- if A is bounded, then $V=V_{r}$ and (\cdot, \cdot) and $(\cdot, \cdot)_{r}$ are equivalent for all $r>0$.
- if A is unbounded, then V_{r} is a proper subspace of V and, for $0<r<s, V_{s}$ is a proper subspace of V_{r}; moreover, none of the inner products $(\cdot, \cdot),(\cdot, \cdot)_{r}$, or $(\cdot, \cdot)_{s}$ are equivalent.
- Moreover, if $\left\{\phi_{n}\right\}$ is a (complete) set of orthogonal eigenfunctions of A in H then they are also a (complete) orthogonal set in each H_{r}.

Left-definite operators

Differential Equation
2. Abstract

Left-Definite Theory
3. Legendre

Left-definite Analysis
4. Powers of the

Legendre Expression
\& Legendre-Stirling
Numbers
5. Combinatorics

Definition: Suppose $H=(V,(\cdot, \cdot))$ is a Hilbert space and A is a self-adjoint operator in H that is bounded below by $k I$. Let $r>0$ and $H_{r}=\left(V_{r},(\cdot, \cdot)_{r}\right)$ be the $r^{\text {th }}$ left-definite space associated with (H, A). If there exists a self-adjoint operator A_{r} in H_{r} that is a restriction of A; i.e.

$$
\begin{gathered}
A_{r} x=A x \\
x \in \mathcal{D}\left(A_{r}\right) \subset \mathcal{D}(A),
\end{gathered}
$$

we call A_{r} an $r^{\text {th }}$ left-definite operator associated with (H, A).
Existence of A_{r} is also at question at this point.

Theorem Suppose A is a self-adjoint operator in $H=(V,(\cdot, \cdot))$ that is bounded below by $k I$. Let $r>0$ and let $H_{r}=\left(V_{r},(\cdot, \cdot)_{r}\right)$ be the $r^{\text {th }}$ left-definite space associated with (H, A). Define A_{r} in H_{r} by

$$
A_{r} x=A x \quad\left(x \in \mathcal{D}\left(A_{r}\right):=V_{r+2} .\right)
$$

Then A_{r} is the unique left-definite operator associated with (H, A). Moreover, $\sigma(A)=\sigma\left(A_{r}\right)$. Furthermore,

- if A is bounded, then $A=A_{r}$ for all $r>0$.

1. Prelude
2. Legendre's

Differential Equation
2. Abstract

Left-Definite Theory
3. Legendre

Left-definite Analysis
4. Powers of the

Legendre Expression \& Legendre-Stirling
Numbers
5. Combinatorics

Theorem Suppose A is a self-adjoint operator in $H=(V,(\cdot, \cdot))$ that is bounded below by $k I$. Let $r>0$ and let $H_{r}=\left(V_{r},(\cdot, \cdot)_{r}\right)$ be the $r^{\text {th }}$ left-definite space associated with (H, A). Define A_{r} in H_{r} by

$$
A_{r} x=A x \quad\left(x \in \mathcal{D}\left(A_{r}\right):=V_{r+2} .\right)
$$

Then A_{r} is the unique left-definite operator associated with (H, A). Moreover, $\sigma(A)=\sigma\left(A_{r}\right)$. Furthermore,

- if A is bounded, then $A=A_{r}$ for all $r>0$.
- if A is unbounded, then $\mathcal{D}\left(A_{r}\right)$ is a proper subspace of $\mathcal{D}(A)$, and when $0<r<s, \mathcal{D}\left(A_{s}\right)$ is a proper subspace of $\mathcal{D}\left(A_{r}\right)$.

Theorem Suppose A is a self-adjoint operator in $H=(V,(\cdot, \cdot))$ that is bounded below by $k I$. Let $r>0$ and let $H_{r}=\left(V_{r},(\cdot, \cdot)_{r}\right)$ be the $r^{\text {th }}$ left-definite space associated with (H, A). Define A_{r} in H_{r} by

$$
A_{r} x=A x \quad\left(x \in \mathcal{D}\left(A_{r}\right):=V_{r+2} .\right)
$$

Then A_{r} is the unique left-definite operator associated with (H, A). Moreover, $\sigma(A)=\sigma\left(A_{r}\right)$. Furthermore,

- if A is bounded, then $A=A_{r}$ for all $r>0$.
- if A is unbounded, then $\mathcal{D}\left(A_{r}\right)$ is a proper subspace of $\mathcal{D}(A)$, and when $0<r<s, \mathcal{D}\left(A_{s}\right)$ is a proper subspace of $\mathcal{D}\left(A_{r}\right)$.
- If $\left\{\phi_{n}\right\}$ is a (complete) set of eigenfunctions of A in H, then they are also a (complete) orthogonal set of eigenfuctions of each A_{r}.

Legendre Left-definite Analysis

Legendre Polynomials and Legendre-Stirling Numbers

- Since the Legendre operator A defined earlier is bounded below by $2 I$, there is an associated left-definite theory.

1. Prelude
2. Legendre's

Differential Equation
2. Abstract

Left-Definite Theory
3. Legendre

Left-definite Analysis
4. Powers of the

Legendre Expression
\& Legendre-Stirling
Numbers
5. Combinatorics

Legendre Left-definite Analysis

- Since the Legendre operator A defined earlier is bounded below by $2 I$, there is an associated left-definite theory.
- Pleijel $[1975,1976]$ was the first to study the Legendre expression $\ell[\cdot]$ in the first left-definite space H_{1} generated by the inner product

$$
(f, g)_{1}=\int_{-1}^{1}\left(\left(1-t^{2}\right) f^{\prime}(t) \bar{g}^{\prime}(t)+2 f(t) \bar{g}(t)\right) d t .
$$

He first observed that $\ell[\cdot]$ is limit-point at both $x= \pm 1$ in H_{1}.

Legendre Left-definite Analysis

- Since the Legendre operator A defined earlier is bounded below by $2 I$, there is an associated left-definite theory.
- Pleijel $[1975,1976]$ was the first to study the Legendre expression $\ell[\cdot]$ in the first left-definite space H_{1} generated by the inner product

$$
(f, g)_{1}=\int_{-1}^{1}\left(\left(1-t^{2}\right) f^{\prime}(t) \bar{g}^{\prime}(t)+2 f(t) \bar{g}(t)\right) d t
$$

He first observed that $\ell[\cdot]$ is limit-point at both $x= \pm 1$ in H_{1}.

- Everitt [1980] continued the study of $\ell[\cdot]$ in H_{1} and obtained a self-adjoint operator A_{1} in

$$
\begin{gathered}
H_{1}=\left\{f:(-1,1) \rightarrow \mathbb{C} \mid f \in A C_{\mathrm{loc}}(-1,1)\right. \\
\left.f,\left(1-x^{2}\right)^{1 / 2} f^{\prime} \in L^{2}(-1,1)\right\}
\end{gathered}
$$

having $\left\{P_{m}\right\}_{m=0}^{\infty}$ as eigenfunctions.

1. Prelude
2. Legendre's

Differential Equation
2. Abstract

Left-Definite Theory
3. Legendre

Left-definite Analysis
4. Powers of the

Legendre Expression
\& Legendre-Stirling
Numbers
5. Combinatorics

- Everitt, Marić, Littlejohn [2002]: the first left-definite operator A_{1} is explicitly given by

$$
\begin{gathered}
\left(A_{1} f\right)(x)=\ell[f](x) \quad(\text { a.e. } x \in(-1,1)) \\
\mathcal{D}\left(A_{1}\right)=\left\{f:(-1,1) \rightarrow \mathbb{C} \mid f, f^{\prime}, f^{\prime \prime} \in A C_{\mathrm{loc}}(-1,1) ;\right. \\
\left.\left(1-x^{2}\right)^{3 / 2} f^{\prime \prime \prime} \in L^{2}(-1,1)\right\} .
\end{gathered}
$$

Legendre Polynomials and Legendre-Stirling Numbers

Lance L. Littlejohn

1. Prelude

2. Legendre's

Differential Equation
2. Abstract

Left-Definite Theory
3. Legendre

Left-definite Analysis
4. Powers of the

Legendre Expression \& Legendre-Stirling
Numbers
5. Combinatorics

- Everitt, Marić, Littlejohn [2002]: the first left-definite operator A_{1} is explicitly given by

$$
\begin{gathered}
\left(A_{1} f\right)(x)=\ell[f](x) \quad(\text { a.e. } x \in(-1,1)) \\
\mathcal{D}\left(A_{1}\right)=\left\{f:(-1,1) \rightarrow \mathbb{C} \mid f, f^{\prime}, f^{\prime \prime} \in A C_{\mathrm{loc}}(-1,1) ;\right. \\
\left.\left(1-x^{2}\right)^{3 / 2} f^{\prime \prime \prime} \in L^{2}(-1,1)\right\} .
\end{gathered}
$$

- What are the left-definite spaces $\left\{H_{r}\right\}$ and left-definite operators $\left\{A_{r}\right\}$ associated with A ? Since $\left\{H_{r}\right\}_{r>0}$ and the inner products $(\cdot, \cdot)_{r}$ are determined from the powers A^{r} of the A, we can only determine these spaces and operators for $r \in \mathbb{N}$.
[Everitt, Littlejohn, Wellman: Legendre polynomials, Legendre-Stirling numbers, and the left-definite spectral analysis of the Legendre differential expression, J. Comput. Appl. Math.,148, 213-238, 2002.]

Powers of the Legendre Expression \& Legendre-Stirling Numbers

where, for $j \in\{1,2, \ldots, n\}$,

$$
c_{j}(n):=P S_{n+1}^{(j+1)}
$$

where $P S_{n}^{(j)}$ is, what we call, a Legendre-Stirling number.

Powers of the Legendre Expression \& Legendre-Stirling Numbers

- The key: with $\ell[\cdot]$ denoting the Legendre differential expression, we have, for each $n \in \mathbb{N}$,

$$
\ell^{n}[y](x)=\sum_{j=0}^{n}(-1)^{j}\left(c_{j}(n)\left(1-x^{2}\right)^{j} y^{(j)}(x)\right)^{(j)}
$$

2. Abstract

Left-Definite Theory
3. Legendre

Left-definite Analysis
where, for $j \in\{1,2, \ldots, n\}$,

$$
c_{j}(n):=P S_{n+1}^{(j+1)}
$$

where $P S_{n}^{(j)}$ is, what we call, a Legendre-Stirling number.

- These Legendre-Stirling numbers are given explicitly by:

$$
P S_{n}^{(j)}:=\sum_{r=1}^{j}(-1)^{r+j} \frac{(2 r+1)\left(r^{2}+r\right)^{n}}{(r+j+1)!(j-r)!}>0 .
$$

- For each $n \in \mathbb{N}$, we can compute the $n^{\text {th }}$ left-definite space

$$
H_{n}=\left(V_{n},(\cdot, \cdot)_{n}\right)
$$

associated with the pair $\left(L^{2}(-1,1), A\right)$. Indeed,

$$
\begin{aligned}
V_{n} & =\left\{f \mid f \in A C_{l o c}^{(n-1)}(-1,1) ;\left(1-t^{2}\right)^{n / 2} f^{(n)} \in L^{2}(-1,1)\right\} \\
& =\mathcal{D}\left(A^{n / 2}\right)
\end{aligned}
$$

and

$$
(f, g)_{n}=\sum_{j=0}^{n} c_{j}(n) \int_{-1}^{1} f^{(j)}(t) \bar{g}^{(j)}(t)\left(1-t^{2}\right)^{j} d t
$$

In each H_{n}, the Legendre polynomials $\left\{P_{m}\right\}_{m=0}^{\infty}$ are a complete orthogonal set.

- For each $n \in \mathbb{N}$, we can compute the $n^{\text {th }}$ left-definite space

$$
H_{n}=\left(V_{n},(\cdot, \cdot)_{n}\right)
$$

associated with the pair $\left(L^{2}(-1,1), A\right)$. Indeed,

$$
\begin{aligned}
V_{n} & =\left\{f \mid f \in A C_{l o c}^{(n-1)}(-1,1) ;\left(1-t^{2}\right)^{n / 2} f^{(n)} \in L^{2}(-1,1)\right\} \\
& =\mathcal{D}\left(A^{n / 2}\right)
\end{aligned}
$$

and

$$
(f, g)_{n}=\sum_{j=0}^{n} c_{j}(n) \int_{-1}^{1} f^{(j)}(t) \bar{g}^{(j)}(t)\left(1-t^{2}\right)^{j} d t
$$

In each H_{n}, the Legendre polynomials $\left\{P_{m}\right\}_{m=0}^{\infty}$ are a complete orthogonal set.

- In particular, we obtain yet another characterization of the domain of A :

$$
\left.\begin{array}{rl}
\mathcal{D}(A)=\{f:(-1,1) & \rightarrow \mathbb{C} \mid f, f^{\prime}
\end{array} \in A C_{\mathrm{loc}}(-1,1) ; ~ 子 ~\left(1-t^{2}\right) f^{\prime \prime} \in L^{2}(-1,1)\right\} .
$$

Combinatorics

Legendre Polynomials and Legendre-Stirling Numbers

Lance L. Littlejohn

1. Prelude
2. Legendre's

Differential Equation
2. Abstract

Left-Definite Theory
3. Legendre

Left-definite Analysis
4. Powers of the

Legendre Expression
\& Legendre-Stirling
Numbers
5. Combinatorics

Stirling numbers of the second kind (e.g. $S_{6}^{(4)}=65$)

j / n	$n=1$	$n=2$	$n=3$	$n=4$	$n=5$	$n=6$	$n=7$
$j=1$	1	2	4	8	16	32	64
$j=2$	-	1	8	52	320	1936	11648
$j=3$	-	-	1	20	292	3824	47824
$j=4$	-	-	-	1	40	1092	25664
$j=5$	-	-	-	-	1	70	3192
$j=6$	-	-	-	-	-	1	112
$j=7$	-	-	-	-	-	-	1

Legendre-Stirling numbers (e.g. $P S_{6}^{(4)}=1092$)

Property

VRR

RGF

TRR

$$
S_{n}^{(j)}=\sum_{r=j}^{n} S_{r-1}^{(j-1)} j^{n-r} \quad P S_{n}^{(j)}=\sum_{r=j}^{n} P S_{r-1}^{(j-1)}\left(j^{2}+j\right)^{n-r}
$$

$$
\prod_{r=1}^{j} \frac{1}{1-r x}=\sum_{n=0}^{\infty} s_{n}^{(j)} x^{n-j} \quad \prod_{r=1}^{j} \frac{1}{1-r(r+1) x}=\sum_{n=0}^{\infty} P S_{n}^{(j)} x^{n-j}
$$

Legendre-Stirling

Legendre Polynomials and Legendre-Stirling Numbers

Lance L. Littlejohn

1. Prelude
2. Legendre's

Differential Equation
2. Abstract

Left-Definite Theory
3. Legendre

Left-definite Analysis
4. Powers of the

Legendre Expression
\& Legendre-Stirling
Numbers
5. Combinatorics

$$
S_{n}^{(0)}=S_{0}^{(j)}=0 ; S_{0}^{(0)}=1 \quad P S_{n}^{(0)}=P S_{0}^{(j)}=0 ; P S_{0}^{(0)}=1
$$

HGF

$$
x^{n}=\sum_{j=0}^{n} S_{n}^{(j)}(x)_{j}, \text { where }
$$

$$
x^{n}=\sum_{j=0}^{n} P S_{n}^{(j)}\langle x\rangle_{j}, \text { where }
$$

$$
(x)_{j}=x(x-1) \ldots(x-j+1)
$$

$$
\left.\langle x\rangle_{j}=x(x-2) \ldots(x-(j-1) j)\right)
$$

1st Kind

$$
(x)_{n}=\sum_{j=0}^{n} s_{n}^{(j)} x^{j}
$$

$$
\langle x\rangle_{n}=\sum_{j=0}^{n} p s_{n}^{(j)} x^{j}
$$

Zoom in:

Property Stirling 2nd Kind Legendre-Stirling

RGF $\quad \prod_{r=1}^{j} \frac{1}{1-r x}=\sum_{n=0}^{\infty} S_{n}^{(j)} x^{n-j} \quad \prod_{r=1}^{j} \frac{1}{1-r(r+1) x}=\sum_{n=0}^{\infty} P S_{n}^{(j)} x^{n-j}$

Legendre Polynomials and Legendre-Stirling Numbers

Lance L. Littlejohn

1. Prelude
2. Legendre's

Differential Equation
2. Abstract

Left-Definite Theory
3. Legendre

Left-definite Analysis
4. Powers of the

Legendre Expression \& Legendre-Stirling
Numbers
5. Combinatorics

The classic Stirling numbers of the second kind $\left\{S_{n}^{(j)}\right\}$ are important in combinatorics:

- $S_{n}^{(j)}$ is the number of ways of putting n objects into j non-empty, indistinguishable boxes.

Legendre Polynomials and Legendre-Stirling Numbers

Lance L. Littlejohn

1. Prelude
2. Legendre's

Differential Equation
2. Abstract

Left-Definite Theory
3. Legendre

Left-definite Analysis
4. Powers of the

Legendre Expression
\& Legendre-Stirling
Numbers
5. Combinatorics

The classic Stirling numbers of the second kind $\left\{S_{n}^{(j)}\right\}$ are important in combinatorics:

- $S_{n}^{(j)}$ is the number of ways of putting n objects into j non-empty, indistinguishable boxes.
- What about the Legendre-Stirling numbers $\left\{P S_{n}^{(j)}\right\}$? Do they count anything?

The classic Stirling numbers of the second kind $\left\{S_{n}^{(j)}\right\}$ are important in combinatorics:

- $S_{n}^{(j)}$ is the number of ways of putting n objects into j non-empty, indistinguishable boxes.
- What about the Legendre-Stirling numbers $\left\{P S_{n}^{(j)}\right\}$? Do they count anything?
- Answer: Yes.

The classic Stirling numbers of the second kind $\left\{S_{n}^{(j)}\right\}$ are important in combinatorics:

- $S_{n}^{(j)}$ is the number of ways of putting n objects into j non-empty, indistinguishable boxes.
- What about the Legendre-Stirling numbers $\left\{P S_{n}^{(j)}\right\}$? Do they count anything?
- Answer: Yes.
- To see what they count, first consider two copies of each positive integer between 1 and n :

$$
1_{1}, 1_{2}, 2_{1}, 2_{2}, \ldots, n_{1}, n_{2} \quad \text { (two different colors). }
$$

The classic Stirling numbers of the second kind $\left\{S_{n}^{(j)}\right\}$ are important in combinatorics:

- $S_{n}^{(j)}$ is the number of ways of putting n objects into j non-empty, indistinguishable boxes.
- What about the Legendre-Stirling numbers $\left\{P S_{n}^{(j)}\right\}$? Do they count anything?
- Answer: Yes.
- To see what they count, first consider two copies of each positive integer between 1 and n :

$$
1_{1}, 1_{2}, 2_{1}, 2_{2}, \ldots, n_{1}, n_{2} \quad \text { (two different colors). }
$$

- For positive integers $p, q \leq n$ and $i, j \in\{1,2\}$, we say that $p_{i}>q_{j}$ if $p>q$.
- To describe what the Legendre-Stirling number $P S_{n}^{(j)}$ counts, we describe two rules on how to fill $j+1$ 'boxes' with the numbers

$$
\left\{1_{1}, 1_{2}, 2_{1}, 2_{2}, \ldots, n_{1}, n_{2}\right\}:
$$

Legendre Polynomials and Legendre-Stirling Numbers

Lance L. Littlejohn

1. Prelude
2. Legendre's

Differential Equation
2. Abstract

Left-Definite Theory
3. Legendre

Left-definite Analysis
4. Powers of the

Legendre Expression
\& Legendre-Stirling
Numbers
5. Combinatorics

- To describe what the Legendre-Stirling number $P S_{n}^{(j)}$ counts, we describe two rules on how to fill $j+1$ 'boxes' with the numbers

$$
\left\{1_{1}, 1_{2}, 2_{1}, 2_{2}, \ldots, n_{1}, n_{2}\right\}:
$$

1. the 'zero box' is the only box that may be empty and it may not contain both copies of any number.

Legendre Polynomials and Legendre-Stirling Numbers

Lance L. Littlejohn

1. Prelude
2. Legendre's

Differential Equation
2. Abstract

Left-Definite Theory
3. Legendre

Left-definite Analysis
4. Powers of the

Legendre Expression \& Legendre-Stirling
Numbers
5. Combinatorics

- To describe what the Legendre-Stirling number $P S_{n}^{(j)}$ counts, we describe two rules on how to fill $j+1$ 'boxes' with the numbers

$$
\left\{1_{1}, 1_{2}, 2_{1}, 2_{2}, \ldots, n_{1}, n_{2}\right\}:
$$

1. the 'zero box' is the only box that may be empty and it may not contain both copies of any number.
2. the other j boxes are indistinguishable and each is non-empty; for each such box, the smallest element in that box must contain both copies (or colors) of this smallest number but no other elements can have both copies in that box.

- To describe what the Legendre-Stirling number $P S_{n}^{(j)}$ counts, we describe two rules on how to fill $j+1$ 'boxes' with the numbers

$$
\left\{1_{1}, 1_{2}, 2_{1}, 2_{2}, \ldots, n_{1}, n_{2}\right\}:
$$

1. the 'zero box' is the only box that may be empty and it may not contain both copies of any number.
2. the other j boxes are indistinguishable and each is non-empty; for each such box, the smallest element in that box must contain both copies (or colors) of this smallest number but no other elements can have both copies in that box.

- Theorem: For $n, j \in \mathbb{N}_{0}$ and $j \leq n$, the Legendre-Stirling number $P S_{n}^{(j)}$ is the number of different distributions according to the above two rules.
[G. E. Andrews and L. L. Littlejohn, A Combinatorial Interpretation of the Legendre-Stirling Numbers, Proc. Amer. Math. Soc., 137(8), 2009, 2581-2590.]

