Bernstein-Durrmeyer operators with arbitrary weight functions

Elena E. Berdysheva

German University of Technology in Oman

Muscat, Sultanate of Oman
Bernstein basis polynomials

Standard simplex in \mathbb{R}^d:

$$S^d := \{ x = (x_1, \ldots, x_d) \in \mathbb{R}^d : 0 \leq x_1, \ldots, x_d \leq 1, x_1 + \cdots + x_d \leq 1 \}.$$
Bernstein basis polynomials

Standard simplex in \mathbb{R}^d:

$$S^d := \{ x = (x_1, \ldots, x_d) \in \mathbb{R}^d : 0 \leq x_1, \ldots, x_d \leq 1, x_1 + \cdots + x_d \leq 1 \}.$$

Barycentric coordinates:

$$x = (x_0, x_1, \ldots, x_d), \quad x_0 := 1 - x_1 - \cdots - x_d.$$
Bernstein basis polynomials

Standard simplex in \mathbb{R}^d:

$$S^d := \{ x = (x_1, \ldots, x_d) \in \mathbb{R}^d :
0 \leq x_1, \ldots, x_d \leq 1, \ x_1 + \cdots + x_d \leq 1 \}. $$

Barycentric coordinates:

$$x = (x_0, x_1, \ldots, x_d), \quad x_0 := 1 - x_1 - \cdots - x_d. $$

The d-variate Bernstein basis polynomials of degree n are defined by

$$B_\alpha(x) := \binom{n}{\alpha} x^\alpha = \frac{n!}{\alpha_0! \alpha_1! \cdots \alpha_d!} x_0^{\alpha_0} x_1^{\alpha_1} \cdots x_d^{\alpha_d}, $$

$$\alpha = (\alpha_0, \alpha_1, \ldots, \alpha_d) \in \mathbb{N}_0^{d+1} \text{ with } |\alpha| := \alpha_0 + \alpha_1 + \cdots + \alpha_d = n. $$
Bernstein basis polynomials

One-dimensional case: $n \in \mathbb{N}$ and $k = 0, 1, \ldots, n$,

$$p_{n,k}(x) := \binom{n}{k} x^k (1 - x)^{n-k}, \quad x \in [0, 1].$$
Bernstein basis polynomials

One-dimensional case: $n \in \mathbb{N}$ and $k = 0, 1, \ldots, n$,

$$p_{n,k}(x) := \binom{n}{k} x^k (1 - x)^{n-k}, \quad x \in [0, 1].$$

$p_{3,0} = (1 - x)^3$
Bernstein basis polynomials

One-dimensional case: \(n \in \mathbb{N} \) and \(k = 0, 1, \ldots, n \),

\[
p_{n,k}(x) := \binom{n}{k} x^k (1 - x)^{n-k}, \quad x \in [0, 1].
\]

\[
p_{3,0} = (1 - x)^3
\]
\[
p_{3,1} = 3x (1 - x)^2
\]
Bernstein basis polynomials

One-dimensional case: $n \in \mathbb{N}$ and $k = 0, 1, \ldots, n$,

$$p_{n,k}(x) := \binom{n}{k} x^k (1 - x)^{n-k}, \quad x \in [0, 1].$$

$$p_{3,0} = (1 - x)^3$$

$$p_{3,1} = 3x (1 - x)^2$$

$$p_{3,2} = 3x^2 (1 - x)$$
Bernstein basis polynomials

One-dimensional case: \(n \in \mathbb{N} \) and \(k = 0, 1, \ldots, n \),

\[
p_{n,k}(x) := \binom{n}{k} x^k (1 - x)^{n-k}, \quad x \in [0, 1].
\]

\[
p_{3,0} = (1 - x)^3
\]
\[
p_{3,1} = 3x (1 - x)^2
\]
\[
p_{3,2} = 3x^2 (1 - x)
\]
\[
p_{3,3} = x^3
\]
Bernstein basis polynomials

Clearly, \[\sum_{|\alpha|=n} B_\alpha(x) = 1. \]
Bernstein basis polynomials

Clearly, \[\sum_{|\alpha|=n} B_\alpha(x) = 1. \]

The polynomials \(\{B_\alpha\}_{|\alpha|=n} \) constitute a basis of the space of \(d \)-variate algebraic polynomials of total degree \(\leq n \).
Bernstein basis polynomials

Clearly, \[\sum_{|\alpha|=n} B_\alpha(x) = 1. \]

The polynomials \(\{B_\alpha\}_{|\alpha|=n} \) constitute a basis of the space of \(d \)-variate algebraic polynomials of total degree \(\leq n \).

The Bernstein operator is defined for \(f \in C(S^d) \) by

\[
(B_n f)(x) := \sum_{|\alpha|=n} f \left(\frac{\alpha}{n} \right) B_\alpha(x).
\]
Bernstein basis polynomials

Clearly, \[\sum_{|\alpha|=n} B_{\alpha}(x) = 1. \]

The polynomials \(\{B_{\alpha}\}_{|\alpha|=n} \) constitute a basis of the space of \(d \)-variate algebraic polynomials of total degree \(\leq n \).

The Bernstein operator is defined for \(f \in C(\mathbb{S}^d) \) by

\[
(B_n f)(x) := \sum_{|\alpha|=n} f\left(\frac{\alpha}{n}\right) B_{\alpha}(x).
\]

This is a positive linear operator that reproduces linear functions.

Uniform convergence for every function in \(C(\mathbb{S}^d) \).
Bernstein-Durrmeyer operator

A similar construction for integrable functions?
A similar construction for integrable functions?

Definition. The Bernstein-Durrmeyer operator is defined for \(f \in L^q(\mathbb{S}^d) \), \(1 \leq q < \infty \), or \(f \in C(\mathbb{S}^d) \) by

\[
(M_n f)(x) := \sum_{|\alpha|=n} \frac{\int_{\mathbb{S}^d} f(y) B_\alpha(y) \, dy}{\int_{\mathbb{S}^d} B_\alpha(y) \, dy} B_\alpha(x).
\]
A similar construction for integrable functions?

Definition. The Bernstein-Durrmeyer operator is defined for \(f \in L^q(S^d) \), \(1 \leq q < \infty \), or \(f \in C(S^d) \) by

\[
(M_n f)(x) := \sum_{|\alpha|=n} \frac{\int_{S^d} f(y) B_\alpha(y) \, dy}{\int_{S^d} B_\alpha(y) \, dy} B_\alpha(x).
\]

\(M_n \) is a positive linear operator that reproduces constant functions. Convergence in \(L^q(S^d) \), \(1 \leq q < \infty \), and in \(C(S^d) \).
Bernstein-Durrmeyer operator

A similar construction for integrable functions?

Definition. The Bernstein-Durrmeyer operator is defined for \(f \in L^q(\mathbb{S}^d) \), \(1 \leq q < \infty \), or \(f \in C(\mathbb{S}^d) \) by

\[
(M_n f)(x) := \sum_{|\alpha|=n} \frac{\int_{\mathbb{S}^d} f(y) B_\alpha(y) \, dy}{\int_{\mathbb{S}^d} B_\alpha(y) \, dy} B_\alpha(x).
\]

\(M_n \) is a positive linear operator that reproduces constant functions. Convergence in \(L^q(\mathbb{S}^d) \), \(1 \leq q < \infty \), and in \(C(\mathbb{S}^d) \).

Introduced in the one-dimensional case by Durrmeyer (1967) and, independently, by Lupaş (1972).
A similar construction for integrable functions?

Definition. The Bernstein-Durrmeyer operator is defined for $f \in L^q(S^d)$, $1 \leq q < \infty$, or $f \in C(S^d)$ by

$$ (M_n f)(x) := \sum_{|\alpha|=n} \frac{\int_{S^d} f(y) B_\alpha(y) \, dy}{\int_{S^d} B_\alpha(y) \, dy} B_\alpha(x). $$

M_n is a positive linear operator that reproduces constant functions. Convergence in $L^q(S^d)$, $1 \leq q < \infty$, and in $C(S^d)$.

Introduced in the one-dimensional case by Durrmeyer (1967) and, independently, by Lupaş (1972). Became known due to Derriennic (starting from 1981).
Bernstein-Durrmeyer operator

A similar construction for integrable functions?

Definition. The Bernstein-Durrmeyer operator is defined for \(f \in L^q(S^d) \), \(1 \leq q < \infty \), or \(f \in C(S^d) \) by

\[
(M_n f) (x) := \sum_{|\alpha|=n} \frac{\int_{S^d} f(y) B_\alpha(y) \, dy}{\int_{S^d} B_\alpha(y) \, dy} B_\alpha(x).
\]

\(M_n \) is a positive linear operator that reproduces constant functions. Convergence in \(L^q(S^d) \), \(1 \leq q < \infty \), and in \(C(S^d) \).

Introduced in the one-dimensional case by Durrmeyer (1967) and, independently, by Lupaş (1972). Became known due to Derriennic (starting from 1981).

Extension to functions on the \(d \)-dimensional simplex: Derriennic (starting from 1985).
Weighted Bernstein-Durrmeyer operator

Let ρ be a non-negative bounded (regular) Borel measure on \mathbb{S}^d such that $\text{supp} (\rho) \setminus (\partial \mathbb{S}^d) \neq \emptyset$.
Let ρ be a non-negative bounded (regular) Borel measure on \mathbb{S}^d such that $\text{supp}(\rho) \setminus (\partial \mathbb{S}^d) \neq \emptyset$.

$L_q(\mathbb{S}^d)$, $1 \leq q < \infty$: the weighted L^q-space with the norm

$$\|f\|_{L_q^\rho} := \left(\int_{\mathbb{S}^d} |f(x)|^q \, d\rho(x) \right)^{1/q}.$$
Weighted Bernstein-Durrmeyer operator

Let ρ be a non-negative bounded (regular) Borel measure on \mathbb{S}^d such that $\text{supp} (\rho) \setminus (\partial \mathbb{S}^d) \neq \emptyset$.

$L_q^\rho (\mathbb{S}^d), 1 \leq q < \infty$: the weighted L^q-space with the norm

$$\| f \|_{L^q_\rho} := \left(\int_{\mathbb{S}^d} |f(x)|^q \, d\rho(x) \right)^{1/q}.$$

Definition. The Bernstein-Durrmeyer operator with respect to the measure ρ is defined for $f \in L^q_\rho (\mathbb{S}^d), 1 \leq q < \infty$, or $f \in C(\mathbb{S}^d)$ by

$$(M_{n,\rho} f)(x) := \sum_{|\alpha| = n} \frac{\int_{\mathbb{S}^d} f(y) \, B_\alpha(y) \, d\rho(y)}{\int_{\mathbb{S}^d} B_\alpha(y) \, d\rho(y)} \, B_\alpha(x).$$
Weighted Bernstein-Durrmeyer operator

Let ρ be a non-negative bounded (regular) Borel measure on \mathbb{S}^d such that $\text{supp}(\rho) \setminus (\partial \mathbb{S}^d) \neq \emptyset$.

$L_q^\rho(\mathbb{S}^d), 1 \leq q < \infty$: the weighted L^q-space with the norm

$$\| f \|_{L_q^\rho} := \left(\int_{\mathbb{S}^d} |f(x)|^q \, d\rho(x) \right)^{1/q}.$$

Definition. The Bernstein-Durrmeyer operator with respect to the measure ρ is defined for $f \in L_q^\rho(\mathbb{S}^d), 1 \leq q < \infty$, or $f \in C(\mathbb{S}^d)$ by

$$(M_{n,\rho} f)(x) := \sum_{|\alpha|=n} \frac{\int_{\mathbb{S}^d} f(y) \, B_\alpha(y) \, d\rho(y)}{\int_{\mathbb{S}^d} B_\alpha(y) \, d\rho(y)} \, B_\alpha(x).$$

$M_{n,\rho}$ is a positive linear operator that reproduces constant functions.
Jacobi weights

The weighted Bernstein-Durrmeyer operator $M_{n,\rho}$ is very well studied for Jacobi weights, i.e., for

$$d\rho(x) = x^{\mu} \, dx,$$

with $\mu = (\mu_0, \mu_1, \ldots, \mu_d) \in \mathbb{R}^{d+1}$, where $\mu_i > -1$, $i = 0, 1, \ldots, d$.
The weighted Bernstein-Durrmeyer operator $M_{n, \rho}$ is very well studied for Jacobi weights, i.e., for

$$d\rho(x) = x^\mu \, dx,$$

with $\mu = (\mu_0, \mu_1, \ldots, \mu_d) \in \mathbb{R}^{d+1}$, where $\mu_i > -1$, $i = 0, 1, \ldots, d$.

Bernstein-Durrmeyer operators with respect to Jacobi weights were introduced by Păltănea (1983), Berens and Xu (1991), in the multivariate case by Ditzian (1995).
Jacobi weights

The weighted Bernstein-Durrmeyer operator \(M_{n, \rho} \) is very well studied for Jacobi weights, i.e., for

\[
d\rho(x) = x^\mu \, dx,
\]

with \(\mu = (\mu_0, \mu_1, \ldots, \mu_d) \in \mathbb{R}^{d+1} \), where \(\mu_i > -1 \), \(i = 0, 1, \ldots, d \).

Bernstein-Durrmeyer operators with respect to Jacobi weights were introduced by Păltănea (1983), Berens and Xu (1991), in the multivariate case by Ditzian (1995).

They were studied by many authors, e.g., Derriennic, Berens, Xu, Ditzian, Chen, Ivanov, X.-L. Zhou, Knoop, Gonska, Heilmann, Abel, Jetter, Stöckler, \ldots
Jacobi weights

Berens and Xu noticed that the Bernstein-Durrmeyer operator with respect to Jacobi weight is a summation method for Jacobi series.
Jacobi weights

Berens and Xu noticed that the Bernstein-Durrmeyer operator with respect to Jacobi weight is a summation method for Jacobi series.

This follows from the spectral properties of the Bernstein-Durrmeyer operators with respect to Jacobi weights:
Berens and Xu noticed that the Bernstein-Durrmeyer operator with respect to Jacobi weight is a summation method for Jacobi series.

This follows from the spectral properties of the Bernstein-Durrmeyer operators with respect to Jacobi weights: the eigenfunctions in this case are Jacobi polynomials.
Berens and Xu noticed that the Bernstein-Durrmeyer operator with respect to Jacobi weight is a **summation method for Jacobi series**.

This follows from the spectral properties of the Bernstein-Durrmeyer operators with respect to Jacobi weights: the eigenfunctions in this case are **Jacobi polynomials**.

For \(d = 1, \mu_1 = \mu_0 = -\frac{1}{2} \), it is exactly the de la Vallée-Poussin mean for Chebyshev series (1908).
Berens and Xu noticed that the Bernstein-Durrmeyer operator with respect to Jacobi weight is a summation method for Jacobi series.

This follows from the spectral properties of the Bernstein-Durrmeyer operators with respect to Jacobi weights: the eigenfunctions in this case are Jacobi polynomials.

For $d = 1$, $\mu_1 = \mu_0 = -\frac{1}{2}$, it is exactly the de la Vallée-Poussin mean for Chebyshev series (1908).

The univariate ultraspherical case ($\mu_1 = \mu_0$) was studied already by Kogbetliantz (1922),
Berens and Xu noticed that the Bernstein-Durrmeyer operator with respect to Jacobi weight is a **summation method for Jacobi series**.

This follows from the spectral properties of the Bernstein-Durrmeyer operators with respect to Jacobi weights: the eigenfunctions in this case are **Jacobi polynomials**.

For $d = 1$, $\mu_1 = \mu_0 = -\frac{1}{2}$, it is exactly the de la Vallée-Poussin mean for Chebyshev series (1908).

The univariate ultraspherical case ($\mu_1 = \mu_0$) was studied already by Kogbetliantz (1922), the general univariate case by Bavinck (1976).
Motivation: Learning Theory

In a joint paper with Kurt Jetter (JAT, 2010), we started to study the multivariate Bernstein-Durrmeyer operators with respect to general measure.
Motivation: Learning Theory

In a joint paper with Kurt Jetter (JAT, 2010), we started to study the multivariate Bernstein-Durrmeyer operators with respect to general measure.

We were motivated by paper

In a joint paper with Kurt Jetter (JAT, 2010), we started to study the multivariate Bernstein-Durrmeyer operators with respect to general measure.

We were motivated by paper

They considered the univariate $M_{n,\rho}$ and used it for estimates for SVM classifiers.
Motivation: Learning Theory

In a joint paper with Kurt Jetter (JAT, 2010), we started to study the multivariate Bernstein-Durrmeyer operators with respect to general measure.

We were motivated by paper

They considered the univariate $M_{n,\rho}$ and used it for estimates for SVM classifiers.

Recently (2012), Bing-Zheng Li used the multivariate operators $M_{n,\rho}$ to obtain estimates for learning rates of least-square regularized regression with polynomial kernels.
Motivation: Learning Theory

Typical problems in learning theory:

- Regression. E.g., least squares.
Motivation: Learning Theory

Typical problems in learning theory:

- Regression. E.g., least squares.

- Classification.
Convergence: examples

Numerical experiments show that convergence holds for a wide class of measures ρ.
Numerical experiments show that convergence holds for a wide class of measures ρ.

Example 1. Consider the measure $d\rho(x) = w(x) \, dx$ with

\[
w(x) = \left| \left(x - \frac{1}{2} \right)^2 - \frac{1}{8} \right|
\]
Example 1

\[d\rho(x) = \left| (x - \frac{1}{2})^2 - \frac{1}{8} \right| \, dx, \quad f(x) = x, \quad n = 5 : \]
Example 1

\[d\rho(x) = \left| (x - \frac{1}{2})^2 - \frac{1}{8} \right| \, dx, \quad f(x) = x, \quad n = 20 : \]
Example 1

\[d\rho(x) = \left| (x - \frac{1}{2})^2 - \frac{1}{8} \right| \, dx, \quad f(x) = x, \quad n = 100 : \]
Example 1

\[d\rho(x) = \left| (x - \frac{1}{2})^2 - \frac{1}{8} \right| \, dx, \quad f(x) = x, \quad n = 500 : \]
Convergence: examples

On the other hand, it is not difficult to construct an example of an operator for which convergence in $C([0, 1])$ fails.
Convergence: examples

On the other hand, it is not difficult to construct an example of an operator for which convergence in $C([0, 1])$ fails.

Example 2. $d\rho(x) = w(x) \, dx$ with

$$w(x) = \begin{cases} 1, & 0 \leq x \leq \frac{1}{2}, \\ 0, & \frac{1}{2} < x \leq 1. \end{cases}$$
Convergence: examples

On the other hand, it is not difficult to construct an example of an operator for which convergence in $C([0, 1])$ fails.

Example 2. $d\rho(x) = w(x) \, dx$ with

$$w(x) = \begin{cases}
1, & 0 \leq x \leq \frac{1}{2}, \\
0, & \frac{1}{2} < x \leq 1.
\end{cases}$$

The Bernstein-Durrmeyer operator has the form

$$(M_{n, \rho} f)(x) = \sum_{k=0}^{n} \frac{\int_{0}^{\frac{1}{2}} f(y) y^k (1 - y)^{n-k} \, dy}{\int_{0}^{\frac{1}{2}} y^k (1 - y)^{n-k} \, dy} \binom{n}{k} x^k (1 - x)^{n-k}.$$
Convergence: examples

On the other hand, it is not difficult to construct an example of an operator for which convergence in $C([0,1])$ fails.

Example 2. $d\rho(x) = w(x) \, dx$ with

$$w(x) = \begin{cases} 1, & 0 \leq x \leq \frac{1}{2}, \\ 0, & \frac{1}{2} < x \leq 1. \end{cases}$$

The Bernstein-Durrmeyer operator has the form

$$(M_{n,\rho} f)(x) = \sum_{k=0}^{n} \frac{\int_{0}^{1/2} f(y) \, y^k \, (1-y)^{n-k} \, dy}{\int_{0}^{1/2} y^k \, (1-y)^{n-k} \, dy} \binom{n}{k} x^k \, (1-x)^{n-k}.$$

Then for $f(x) = x$ we have $(M_{n,\rho} f)(x) \leq \frac{1}{2}$, $x \in [0,1]$.
Example 2

\[d\rho = \chi_{[0, \frac{1}{2}]} \, dx, \quad f(x) = x, \quad n = 5 : \]
Example 2

\[d\rho = \chi_{[0, \frac{1}{2}]} \, dx, \quad f(x) = x, \quad n = 15 : \]
Example 2

\[d\rho = \chi_{[0, \frac{1}{2}]} \, dx, \quad f(x) = x, \quad n = 30 : \]
Example 2

\[d\rho = \chi_{[0, \frac{1}{2}]} \, dx, \quad f(x) = x, \quad n = 100 : \]
Example 2

\[d\rho = \chi_{[0, \frac{1}{2}]} \, dx, \quad f(x) = x, \quad n = 200 : \]
Example 2

\[d\rho = \chi_{[0, \frac{1}{2}]} \, dx, \quad f(x) = x, \quad n = 200 : \]
Convergence in $C(S^d)$

We give necessary and sufficient conditions on the measure ρ for convergence in $C(S^d)$.
Convergence in $C(\mathbb{S}^d)$

We give necessary and sufficient conditions on the measure ρ for convergence in $C(\mathbb{S}^d)$.

Recall that a measure ρ on \mathbb{S}^d is called strictly positive, if $\rho(A \cap \mathbb{S}^d) > 0$ for every open set $A \subset \mathbb{R}^d$ with $A \cap \mathbb{S}^d \neq \emptyset$.
We give necessary and sufficient conditions on the measure ρ for convergence in $C(\mathbb{S}^d)$.

Recall that a measure ρ on \mathbb{S}^d is called strictly positive, if $\rho(A \cap \mathbb{S}^d) > 0$ for every open set $A \subset \mathbb{R}^d$ with $A \cap \mathbb{S}^d \neq \emptyset$.

This is equivalent to the fact that $\text{supp} (\rho) = \mathbb{S}^d$.
We give necessary and sufficient conditions on the measure ρ for convergence in $C(\mathbb{S}^d)$.

Recall that a measure ρ on \mathbb{S}^d is called strictly positive, if $\rho(A \cap \mathbb{S}^d) > 0$ for every open set $A \subset \mathbb{R}^d$ with $A \cap \mathbb{S}^d \neq \emptyset$.

This is equivalent to the fact that $\text{supp}(\rho) = \mathbb{S}^d$.

Theorem. (EB, JMAA, 2012) We have
\[\lim_{n \to \infty} \| f - M_{n, \rho} f \|_C = 0 \]
for all $f \in C(\mathbb{S}^d)$ if and only if ρ is strictly positive on \mathbb{S}^d.
We say that ρ is a Jacobi-like measure, if

$$d\rho(x) = w(x) \, dx,$$
We say that ρ is a Jacobi-like measure, if

$$d\rho(x) = w(x) \, dx,$$

and there are two exponents $\nu \geq \mu > -e$ and two constants $0 < a, A < \infty$ such that

$$a \, x^\nu \leq w(x) \leq A \, x^\mu, \quad x \in \mathbb{S}^d.$$
We say that ρ is a Jacobi-like measure, if

$$d\rho(x) = w(x) \, dx,$$

and there are two exponents $\nu \geq \mu > -e$ and two constants $0 < a, A < \infty$ such that

$$a \, x^\nu \leq w(x) \leq A \, x^\mu, \quad x \in \mathbb{S}^d.$$

Denote $\varphi_{e_i}(x) = x_i$, $\varphi_{2e_i}(x) = x_i^2$.
Theorem. (Kurt Jetter-EB, JAT, 2010) Let ρ be a Jacobi-like measure with $|\nu| - |\mu| < 1$. Then

$$\| \varphi_{e_i} - M_{n, \rho}(\varphi_{e_i}) \|_{C} \leq C n^{-\frac{1-(|\nu| - |\mu|)}{2}}$$

and

$$\| \varphi_{2e_i} - M_{n, \rho}(\varphi_{2e_i}) \|_{C} \leq C n^{-\frac{1-(|\nu| - |\mu|)}{2}}.$$
Theorem. (Kurt Jetter-EB, JAT, 2010) Let ρ be a Jacobi-like measure with $|\nu| - |\mu| < 1$. Then

$$\| \varphi_{e_i} - M_{n,\rho}(\varphi_{e_i}) \|_C \leq C n^{-\frac{1 - (|\nu| - |\mu|)}{2}}$$

and

$$\| \varphi_{2e_i} - M_{n,\rho}(\varphi_{2e_i}) \|_C \leq C n^{-\frac{1 - (|\nu| - |\mu|)}{2}}.$$

Corollary. Let ρ be a Jacobi-like measure with $|\nu| - |\mu| < 1$. Let $f \in C(S^d)$. Then

$$\| f - M_{n,\rho} f \|_C \leq C \omega \left(f, n^{-\frac{1 - (|\nu| - |\mu|)}{4}} \right),$$

where $\omega(f, \delta) = \sup \{|f(x) - f(t)| : \|t - x\|_2 < \delta\}$ denote the modulus of continuity of f.

Bernstein-Durrmeyer operators with arbitrary weight functions – p. 28/32
Convergence on $\text{supp } \rho$

Theorem. (EB, 2012) Let $x \in (\text{supp } \rho)^\circ$. Let f be bounded on $\text{supp } \rho$ and continuous at x. Then

$$\lim_{n \to \infty} |f(x) - M_{n, \rho} f(x)| = 0.$$
Convergence on $\text{supp } \rho$

Theorem. (EB, 2012) Let $x \in (\text{supp }\rho)^\circ$. Let f be bounded on $\text{supp }\rho$ and continuous at x. Then

$$\lim_{n \to \infty} |f(x) - M_{n,\rho} f(x)| = 0.$$

Theorem. (EB, 2012) Let A be a compact set, $A \subset (\text{supp }\rho)^\circ$. Let f be bounded on $\text{supp }\rho$ and continuous on A. Then

$$\lim_{n \to \infty} \|f - M_{n,\rho} f\|_{C(A)} = 0.$$
Convergence in $L^q_{\rho}(S^d)$

Theorem. (Bing-Zheng Li, 2012) Let ρ be a non-negative bounded (regular) Borel measure on S^d such that $\text{supp}(\rho) \setminus (\partial S^d) \neq \emptyset$. Let $1 \leq q < \infty$. Then

$$\lim_{n \to \infty} \| f - M_{n,\rho} f \|_{L^q_{\rho}} = 0$$

for every $f \in L^q_{\rho}(S^d)$.
Consider the K-functional

$$K_q(f, t) = \inf \{ \| f - g \|_{L^q_\rho} + t \max_{i=1, \ldots, d} \| \partial_i g \|_C : g \in C^1(S^d) \}.$$
Convergence in $L^q_\rho(S^d)$

Consider the K-functional

$$
K_q(f, t) = \inf \{ \| f - g \|_{L^q_\rho} + t \max_{i=1,\ldots,d} \| \partial_i g \|_{C} : g \in C^1(S^d) \}.
$$

Theorem. (Bing-Zheng Li-EB, 2012) Let ρ be a non-negative bounded Borel measure on S^d such that $\text{supp} \rho \setminus \partial S^d \neq \emptyset$, and let $f \in L^q_\rho(S^d)$, $1 \leq q < \infty$. Then

$$
\| f - M_{n,\rho} f \|_{L^q_\rho} \leq 2K_q \left(f, \frac{C_q}{\sqrt{n}} d \left[\rho(S^d) \right]^{\frac{1}{q}} \right), \quad 1 \leq q < \infty,
$$

where C_q is a constant that depends only on q. Moreover, $C_q = 1$ for $1 \leq q \leq 2$.
Convergence in $L^q_\rho(S^d)$

Consider the K-functional

$$K_q(f, t) = \inf \{ \| f - g \|_{L^q_\rho} + t \max_{i=1, \ldots, d} \| \partial_i g \|_C : g \in C^1(S^d) \}.$$

Theorem. (Bing-Zheng Li-EB, 2012) Let ρ be a non-negative bounded Borel measure on S^d such that $\text{supp} \rho \setminus \partial S^d \neq \emptyset$, and let $f \in L^q_\rho(S^d)$, $1 \leq q < \infty$. Then

$$\| f - M_{n, \rho} f \|_{L^q_\rho} \leq 2 K_q \left(f, \frac{C_q}{\sqrt{n}} d \left[\rho(S^d) \right]^{\frac{1}{q}} \right), \quad 1 \leq q < \infty,$$

where C_q is a constant that depends only on q. Moreover, $C_q = 1$ for $1 \leq q \leq 2$.

Remark: the cases $q = 1$, $q = 2$ are due to Bing-Zheng Li.
Thank you for your attention!