On Existence of Ball Small Sets With Aronszajn Null Complements in Banach Spaces

Jakub Duda

April 26, 2013

Jakub Duda Ball Small Sets With Aronszajn Null Complements

∃ → < ∃</p>

A D

2 Definitions and Background

Jakub Duda Ball Small Sets With Aronszajn Null Complements

A ►

A B > A B >

э

Main results

Theorem

Let X be an infinite dimensional separable Banach space with modulus of convexity of power type $p \ge 2$. Then there exists a Borel set $A \subset X$ which is ball small and whose complement is Aronszajn null.

Corollary

There exist Borel ball small subsets of $A \subset \ell_1$ and $B \subset L_1$ whose complements are Aronszajn null.

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

Christensen's conjecture

Proposition (Duda, 2004)

Let X be a separable Banach space and $D \subset X$ be a Borel ball small set. Suppose that $X \setminus D$ is Aronszajn null. Then there exists a nonempty closed set A and a Borel set Q which is not Haar null such that the metric projection $P_A(x)$ is empty for each $x \in Q$.

Applying our main Theorem gives the following Corollary, which negatively resolves a conjecture due to J. P. R. Christensen (1973):

Corollary

Let X be an infinite-dimensional separable superreflexive space such that X has modulus of convexity of power type p for some $p \ge 2$. Then there exists a nonempty closed set A and a Borel set Q which is not Haar null such that $P_A(x) = \emptyset$ for all $x \in Q$.

Metric projection

Remark

A similar result holds for "farthest points" as well. See [Duda, 2004] for details.

Let X be a normed linear space, $A \subset X$, and $x \in X$.

Definition

We define the metric projection $P_A(x)$ as the set

$$\{y \in A : \|x - y\| = \operatorname{dist}(x, A)\}.$$

・ 同 ト ・ ヨ ト ・ ヨ

Modulus of convexity

Let X be a normed linear space. The modulus of convexity δ_X is defined for $\varepsilon \in (0, 2]$ as

$$\delta_X(\epsilon) = \inf\{1 - \|x + y\|/2 : x, y \in S_X, \|x - y\| \ge \varepsilon\}.$$

Definition

We say that δ_X is of *power type* $p \ge 2$ provided there exists C > 0 such that $\delta_X(\varepsilon) \ge C\varepsilon^p$ for $\varepsilon \in (0, 2]$.

Remark

Hanner's results imply that spaces L_p and ℓ_p (where 1) have modulus of convexity of power type max<math>(2, p).

Ball small sets

Let X be a normed linear space, $A \subset X$ and r > 0.

Definition

We say that X is *r*-ball porous provided for each $x \in A$ and $\varepsilon > 0$ there exists $y \in X$ such that ||x - y|| = r and $B(y, r - \varepsilon) \cap A = \emptyset$.

Definition

We say that $B \subset X$ is *ball small* provided $B = \bigcup_{i=1}^{\infty} A_n$ where A_n is r_n -ball porous for some $r_n > 0$.

(4月) (1日) (日)

Aronszajn and Haar null sets

Let X be a Banach space and A, B be Borel subsets of X.

Definition

We say that A is Haar null provided there exists a Borel probability measure μ on X such that $\mu(A + x) = 0$ for each $x \in X$.

Definition

We say that *B* is *Aronszajn null* provided that for each sequence $(x_i)_i$ whose closed linear span is *X*, there exist Borel sets $B_i \subset X$ such that $B = \bigcup_i B_i$ and intersection of each B_i with any line in the direction of x_i has one-dimensional Lebesgue measure 0.

Aronszajn null sets are Haar null, but not vice versa.

- 4 回 ト 4 ヨト 4 ヨト

Porous sets with small complements

Definition

A set $E \subset X$ is called *porous* if there is c > 0 such that for every $x \in E$ and every $\delta > 0$ there is a $z \in X$ such that $0 < ||z - x|| < \delta$ and $E \cap B(z, c||z - x||) = \emptyset$.

A result related to the main theorem was proved earlier:

Theorem (Preiss, Tišer)

Every separable infinite-dimensional separable Banach space X may be decomposed into two sets U and V such that U is of linear measure zero on every line, and V is a countable union of closed porous sets.

- 4 周 ト 4 月 ト 4 月

Facts about null sets

We will need the following two facts about Aronszajn null sets:

Lemma (Matoušek, Matoušková)

Let X be a separable Banach space, $A \subset X$ Borel and $Y \subset X$ closed subspace of finite codimension. Let $n \in \mathbb{N}$ be such that the intersection of A with any n-dimensional affine subspace parallel to Y is of n-dimensional measure zero. Then A is Aronszajn null.

Lemma (Matoušková)

Let X, Y be separable infinite-dimensional Banach spaces, and $T: X \to Y$ a continuous linear surjective map. Let $A \subset Y$ be Aronszajn null. Then $T^{-1}(A)$ is Aronszajn null.

・ロト ・同ト ・ヨト ・ヨト

Ball small sets and quotient maps

Proposition

Let X be a separable Banach space and $Y \subset X$ be a subspace.

Let q : X → X/Y be the canonical quotient map. Then for each x ∈ X and r > 0 we have

$$q^{-1}(B_{X/Y}(q(x),r)) = B_X(x,r) + Y.$$

Thus, if $A \subset X/Y$ is a ball small subset of X/Y, then $q^{-1}(A)$ is a ball small subset of X.

If X has modulus of convexity of power type p, then so does X/Y.

| 4 同 1 4 三 1 4 三 1

Proof of the main theorem

Reduction to the case with a basis:

Choose $Y \subset X^*$ with a basis. Then $W = X/Y^*$ has basis and modulus of convexity of power type p. Let $D \subset W$ be an Aronszajn null set with a ball small complement. Then $q^{-1}(D)$ is the desired set (using Lemmas and Proposition from previous slides). Thus, we can assume that X has a basis.

Compatible measures on affine finite-dimensional subspaces

Let X be a Banach space. For every *n*-dimensional subspace $Y \subset X$ fix an isomorphism $M_Y : Y \to \mathbb{R}^n$ with $||M_Y|| \le 1$. Let λ_Y be the induced measure (by M_Y). For any affine subspace $W \subset X$ parallel to Y, define $\lambda_W(C) := \lambda_Y(C - o_W)$ for any Borel $C \subset W$ where $o_W \in W$ is fixed.

Lemma

 $A \subset W$ Borel. Then:

\$\lambda_W(A) = \lambda_Z(A - o_W + o_Z)\$ for any affine subspace Z parallel to W of same dimension,

3
$$\eta^n \lambda_W(A) = \lambda_{W_\eta}(\eta A)$$
 for any $\eta > 0$,

• $\lambda_W(B(s,t) \cap W) \le vt^n$ for any $s \in W$ and t > 0, where $v := \sup_n vol_n(B_{\mathbb{R}^n}(0,1)) < \infty$.

A geometric lemma

Lemma

Suppose that a Banach space X has modulus of convexity of power type p. Then for each $N \in \mathbb{N}$ there exists $\beta = \beta(p, N, X) > 0$ such that whenever Z is an N-dimensional affine subspace of X, and $x \in X$ satisfies

 $dist(x, Z) \ge 1 - \rho$

for some $\rho \in (0,1)$, then

 $\lambda_Z(B(x,1)\cap Z)\leq \beta\rho^{N/p}.$

伺 ト イ ヨ ト イ ヨ ト

Test cubes

Definition

An N-dimensional test cube U will be any set of the form

$$U = \left\{ x + \sum_{i=1}^{N} \alpha_i u_i : \alpha_i \in [0, 1] \right\},\$$

where $u_i \in \overline{B}_X(0,1)$, and u_i 's are linearly independent.

伺 ト く ヨ ト く ヨ ト

э

Proposition

Let X be an infinite dimensional separable Banach space with a basis and with modulus of convexity of power type p. Then there exists an $N \in \mathbb{N}$ such that for each $\varepsilon > 0$ we can find r > 0 and a countable $C \subset X$, such that for each $x \in X$ and $\psi, \xi > 0$ there exist infinitely many $c_n, \tilde{c}_n \in C$ with

- 4 同 6 4 日 6 4 日 6

Proof of the proposition

Let $(e_k)_k$ be the basis of X and let $(f_k)_k$ be the dual basis with $||f_k|| = 1$. Let $(x_k)_k$ be a dense finitely-supported (relative to $(e_k)_k$) sequence in X with each point repeated infinitely many times. Find $n_k \in \mathbb{N}$ and $s_k \in S_X$ so that

• $\max\{\max(\operatorname{supp} x_k), n_{k-1}\} < n_k$,

•
$$\|s_k\| = \langle f_{n_k}, s_k \rangle = 1$$
,

• $|f_{n_k}(s_l)| \le 1/k$ for l < k.

Now define $c_k = x_k + s_k$ and $\tilde{c}_k = x_k - s_k$. Let $C_1 = \{c_k\}$, $\tilde{C}_1 = \{\tilde{c}_k\}$ and $C = C_1 \cup \tilde{C}_1$.

伺 ト イ ヨ ト イ ヨ ト

Choice of N

Theorem (Gurarii-Gurarii)

Let E be a superreflexive space. Then there are $1 < t < q < \infty$ and $\gamma > 0$ such that every normalized basic sequence $\{x_n\}$ satisfies

(*)
$$\gamma^{-1}\left(\sum |a_n|^q\right)^{1/q} \leq \left\|\sum a_n x_n\right\| \leq \gamma \left(\sum |a_n|^t\right)^{1/q}$$

for every choice of scalars $\{a_n\}$ for which $\sum a_n x_n$ converges.

Let

$$N > pq_1$$
.

The basis (e_n) is not normalized but since $1/\gamma \le ||e_n|| \le \gamma$ (γ from previous theorem for (f_n)), (*) also holds for (e_n) with t_1, q_1, γ_1 .

Proof of proposition (continued)

It is easy to see that (1)–(4) hold for r = 1. We will prove that for large enough K > 0 we have

$$(**) \quad \mathcal{K}^{-N}\lambda_{\mathsf{aff}(\mathcal{T})}(\mathcal{T}\cap B(\mathcal{C},1)) < arepsilon$$

for any T which is a K-times enlarged test cube U. (Once we have this, the proposition follows by taking r = 1/K.) To see that (**) holds, let

$$T = KU = \left\{ Kx + \sum_{i=1}^{N} \alpha_i u_i : \alpha_i \in [0, K] \right\}$$

be our enlarged test cube. Then (take W = aff(T))

$$\mathcal{K}^{-N}\lambda_W(\mathcal{T}\cap \mathcal{B}(\mathcal{C},1))=\lambda_V(\mathcal{U}\cap \mathcal{B}(\mathcal{C}/\mathcal{K},1/\mathcal{K})).$$

Proof of the proposition (continued)

Define

$$U_j = \{k \in \mathbb{N} : 1 - 2^{-j} \leq \mathsf{dist}(T, c_k) < 1 - 2^{-j-1}\}.$$

We have

$$\lambda_{\operatorname{aff}(T)}(T \cap B(c_k, 1)) \leq \beta 2^{-Nj/p}.$$

Thus

$$\mathcal{K}^{-N}\lambda_{\mathsf{aff}(\mathcal{T})}(\mathcal{B}(\mathcal{C}_1,1)\cap\mathcal{T})\leq rac{eta}{\mathcal{K}^N}\sum_j 2^{-Nj/p}|I_j|.$$

Take $\eta := 1/(NK2^{j+2})$ and define $I'_j = \{k \in I_j : |\langle u_i, f_{n_k} \rangle| < \eta \text{ for all } i = 1, \dots, N\}.$ By Gurarii-Gurarii theorem, we have

$$|I_j \setminus I'_j| \leq N \gamma^q \eta^{-q} = \gamma^q N^{q+1} K^q 2^{q(j+2)}.$$

∃ ►

Proof of the proposition (continued)

To bound $|I'_j|$ let $k \in I'_j$. We obtain that $\langle f_{n_k}, x \rangle \geq 2^{-j-2}$ and thus

$$\gamma^{-1}\left(\sum_{i=n_k}^{\infty} |\langle f_i, x \rangle|^q\right)^{1/q} < 4NK.$$

Let $l \in \mathbb{N}$ be the first so that $(\sum_{i=l}^{\infty} |\langle f_i, x \rangle|^q)^{1/q} \leq 4\gamma NK$ and then $(4\gamma NK)^q \geq (|I'_j| - 1)2^{-q(j+2)}.$

The final estimate is

$$\mathcal{K}^{-N}\lambda_{\mathsf{aff}(\mathcal{T})}(\mathcal{B}(\mathcal{C}_1,1)\cap\mathcal{T}) \leq rac{\mathcal{C}(\mathcal{N},\mathcal{p},q,X)}{\mathcal{K}^{N-q}}$$

A similar argument works for \tilde{C}_1 (choosing $-f_{n_k}$). Thus for large K,

$$\mathcal{K}^{-N}\lambda_{\operatorname{aff}(T)}(\mathcal{B}(\mathcal{C},1)\cap T)<\varepsilon.$$

Proof of the main theorem (continued)

For $m \in \mathbb{N}$ apply previous proposition with $\varepsilon = 1/m$ obtaining $r_m > 0$ and sets C_m . Define

$$E:=\bigcap_m B(C_m,r_m).$$

For any N-dimensional test cube U we have that $\lambda_{aff(U)}(U \cap B(C_m, r_m)) \leq 1/m$ and thus E intersected with any affine N-dimensional subspace of X has measure 0. Thus E is Aronszajn null by an earlier lemma.

Now

$$A = X \setminus E = \bigcup_m (X \setminus B(C_m, r_m))$$

is ball small since previous proposition implies that $X \setminus B(C_m, r_m)$ is r_m -ball porous.

References

- J. Duda, On the size of the set of points where the metric projection exists, Israel J. Math 140 (2004).
- J. Matoušek and E. Matoušková, *A highly non-smooth norm on Hilbert space*, Israel J. Math 112 (1999).
- E. Matoušková, An almost nowhere Fréchet smooth norm on superreflexive spaces, Institutbericht Nr. 534, Univ. Linz (1997).
- E. Matoušková, *Almost nowhere Fréchet smooth norms*, Studia Math. 133 (1999).
- D. Preiss, S. Tišer, Two unexpected examples concerning differentiability of Lipschitz functions on Banach spaces, in: Geometric Aspects of Functional Analysis (Israel 1992-1994), Birkhäuser, 1995.

Contact information

Jakub Duda

email:jakub.duda@gmail.com

Image: Image: