
August 23, 2017
Let us measure everything that is measurable, and
make measurable everything that is not yet so.

Galileo Galilei

1. Vector spaces

1.1. Notations.
x ∈ S denotes the fact that the element x belongs to the set S.
A ⊂ B denotes that the set A is included in the set B (possibly A = B).
Z denotes the set of all integer numbers,
Z+ denotes the set of all positive integers: Z+ = {1, 2, 3, . . .},
N denotes the set of natural numbers: N = {0, 1, 2, 3, . . .},
Q denotes the set of rational numbers: Q = {mn |m,n ∈ Z, n 6= 0},
R denotes the set of real numbers,
C denotes the set of complex numbers.
Of course, R ⊂ C (the set of real numbers is included in the set of complex
numbers).

While in planar geometry it is customary to denote the coordinates of
points by (x, y), in linear algebra it is often preferable to use (x1, x2).

Similarly, instead of denoting generic coordinates in space by (x, y, z), it
may be preferable using (x1, x2, x3).

In Linear Algebra the components of vectors are often listed vertically, so
I should write them as (x1, x2)

T . I will start using the correct notation as
soon as it matters, namely when they start being multiplied by matrices.

1.2. The definition of vector spaces.

1.2.1. Usual examples. The rules of operations with vectors originate from
mechanics (working with forces, velocities) and from the usage of complex
numbers.

Recall the vectors in the plane: one can do geometry with them by adding
or subtracting, by multiplying with numbers.

Any vector x in the plane can be represented as an arrow starting at
the origin O and ending at a point with coordinates, say, (x1, x2). When
multiplying the vector x by a scalar c (which is a real number) the result is
a vector cx staring at O and ending at the point (cx1, cx2).

When adding, using the parallelogram rule, two vectors x, respectively
y, which start at O and end at (x1, x2), respectively (y1, y2), the result
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is a vector x + y, which starts at O and ends at (x1 + y1, x2 + y2). The
result of the subtraction x−y, using the triangle rule, is a vector ending at
(x1 − y1, x2 − y2).

Similarly for vectors in space: when adding (using the parallelogram rule)
two vectors x, y (starting at O and) ending at (x1, x2, x3), (y1, y2, y3) we
obtain a vector (starting at O and) ending at (x1 + y1, x2 + y2, x3 + y3).
Multiplying the vector x by the scalar c we obtain a vector cx (starting at
O and) ending at (cx1, cx2, cx3).

Therefore: to operate with vectors we can forget the arrow image, and just
work with coordinates! We just write x = (x1, x2, x3), and we can call this
object a vector, or a point, whichever helps our intuition more.

We denote by R2 the set of vectors in the plane:

R2 = {x = (x1, x2) |xj ∈ R}
with addition defined as

x + y = (x1, x2) + (y1, y2) = (x1 + y1, x2 + y2)

and multiplication by scalars defined as:

cx = c(x1, x2) = (cx1, cx2) for c ∈ R
Similarly R3 denotes the set of vectors in space:

R3 = {(x1, x2, x3) |xj ∈ R}
with operations defined as

x + y = (x1, x2, x3) + (y1, y2, y3) = (x1 + y1, x2 + y2, x3 + y3)

cx = c(x1, x2, x3) = (cx1, cx2, cx3) for c ∈ R
Similarly, we can define n-dimensional vectors by

Rn = {x = (x1, x2, . . . , xn) |xj ∈ R}
which we can add by:

x + y = (x1, x2, . . . , xn) + (y1, y2, . . . , yn) = (x1 + y1, x2 + y2, . . . , xn + yn)

and multiply by scalars:

cx = c(x1, x2, . . . , xn) = (cx1, cx2, . . . , cxn) for c ∈ R

1.2.2. Complex vectors. It turns out that there is a great advantage to allow
for complex coordinates, in which case we consider C2:

C2 = {z = (z1, z2) ; z1,2 ∈ C}
which can be added:

z + w = (z1, z2) + (w1, w2) = (z1 + w1, z2 + w2)

and multiplied by scalars which are complex numbers:

cz = c(z1, z2) = (cz1, cz2) for c ∈ C
Similarly, we can consider C3, . . . ,Cn.
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1.2.3. The Abstract Definition of a Vector Space. The following definition
summarizes some properties of addition and multiplication by scalars of the
vector spaces listed above.

In the following F denotes R or C. In fact, F can also be Q, Zp, or any
field1.

Definition 1. The set V is a vector space over the scalar field F if V is
endowed with two operations, one between vectors:

(1) for every x,y ∈ V there is x + y ∈ V
and one between scalars and vectors:

(2) for every c ∈ F and x ∈ V there is cx ∈ V
having the following properties:

(i) commutativity of addition:

x + y = y + x

(ii) associativity of addition:

x + (y + z) = (x + y) + z

(iii) existence of zero: there is an element 0 ∈ V so that

x + 0 = x for all x ∈ V
(iv) existence of the opposite: for any x ∈ V there is an opposite, denoted

by −x, so that
x + (−x) = 0

(v) distributivity of scalar multiplication with respect to vector addition:

c(x + y) = cx + cy

(vi) distributivity of scalar multiplication with respect to field addition:

(c+ d)x = cx + dx

(vii) compatibility of scalar multiplication with field multiplication:

c(dx) = (cd)x

(viii) identity element of scalar multiplication:

1x = x

Remark 2. From the axioms above we can deduce other properties, which
are obvious for Rn and Cn, but we need to know them in general. For
example, it follows that:
(ix) the zero scalar multiplied by any vector is the zero vector:

0x = 0

(x) the scalar −1 multiplying any vector equals the opposite of the vector:

(−1)x = −x

1A field is a commutative ring where any nonzero element has an inverse.
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Proof:
To show (ix) note that 0x = (0 + 0)x = 0x + 0x (by (vi)) so 0x =

0x + 0x and adding the opposite of 0x we get 0x = 0 (using, in order,
(iv),(ii),(iv),(iii).

Then to show (x) note that (−1)x+x = (−1)x+1x = (−1+1)x = 0x = 0
where we used, in order, (viii),(vi),(ix). 2

Remark. Another name used for vector space is linear space. The
latter name is preferable when the space V consists of functions, see exam-
ples 4.-8. below.

Vector spaces over the scalars F = R are also called ”vector spaces over
the reals”, or ”real vector spaces”, and similarly, for the complex case F = C,
one can say ”vector spaces over the complex numbers”, or ”complex vector
spaces”.

1.2.4. Examples.
1. R, R2, R3, . . . Rn are vector spaces over the reals.
2. C, C2, C3, . . . Cn are vector spaces over the complex numbers.
2’. Cn is also vector spaces over the real numbers, but Rn is not a vector
space over C.
3. RZ+ = {(x1, x2, x3, . . . , xn, . . .) |xj ∈ R} is a vector space over the reals
(the space of all sequences of real numbers).
4. The set of all polynomials with real coefficients, of degree at most n

(3) Pn(R) = {p(t) = a0 + a1t+ a2t
2 + . . .+ ant

n | aj ∈ R}

is a linear space over R. The zero element is the zero polynomial.
4’. The set of all polynomials with real coefficients, of degree exactly n is
not a linear space over R.
5. The set of all polynomials with real coefficients

(4) P(R) = {p(t) = a0 + a1t+ a2t
2 + . . .+ ant

n | aj ∈ F, n ∈ N}

is a linear space over R.
6. The set of all polynomials with complex coefficients

(5) P(C) = {p(t) = a0 + a1t+ a2t
2 + . . .+ ant

n | aj ∈ C, n ∈ N}

is a linear space over C. It is also a linear space over R.
7. The set of functions which are continuous on [0, 1] and have values in F :

C([0, 1], F ) = {f : [0, 1]→ F | f continuous }

is a linear space over F . The zero element is the function which is identically
zero.
8. The set of all solutions of the linear differential equation u′′(t) = u(t) is
a linear space.
Exercise. Justify the statements 3.-8.
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1.3. Subspaces. Let V be a vector space over the scalars F . If U is a
subset in V we can add two elements of U , but there is no guarantee that
the results will remain in U . Similarly, we can multiply by scalars elements
of U , but there is no guarantee that the result will be also in U . But if these
are true, then U is called a subspace of V :

Definition 3. A subset U ⊂ V is called a subspace of V if

for any x,y ∈ U, c ∈ F we have x + y ∈ U, cx ∈ U

Note that the two properties above are sometime written more compactly
as

for any x,y ∈ U, c, d ∈ F we have cx + dy ∈ U
(but the two formulations are equivalent - why?).

Remarks.
1. Note that a subspace contains the zero vector (to see this, multiply

any vector in U by the scalar 0).
2. Moreover, a subspace U is a vector space in itself (with respect to

the addition and scalar multiplication inherited from the bigger space V ).
Indeed, properties (1), (2) are guaranteed by the definition of the subspace,
while all the other properties (i)-(viii) are automatically satisfied (they are
true for all elements of V , in particular for those in U).

1.3.1. Examples.
1. The set {0}, consisting of only the zero element, is a subspace of V .
2. V is a subspace of itself.
3. U ⊂ R2 given by U = {(x1, x2) |x1 = 3x2} is a subspace of R2.
4. U ⊂ R3, U = {(x1, x2, x3) |x1 = 3x2, x3 = x2} is a subspace of R3.
5. U ⊂ R3, U = {(x1, x2, x3) |x2 = 1} is not a subspace of R3.
6. Lines which pass through the origin are subspaces.
7. Any line which is a subspace of R2 must pass through O.
8. Planes passing through the origin are subspaces in R3.

Indeed, a plane in R3 is given be a linear equation: Ax1 +Bx2 +Cx3 = D.
The plane passes through the origin for D = 0. Consider then a plane

U = {(x1, x2, x3) ∈ R3 |Ax1 +Bx2 + Cx3 = 0}

It is now easy to show that U is a subspace.
9. The set {(x1, x2) ∈ R2 |xj ≥ 0} is not a subspace.
10. Pn is a subspace of the space of P (see (3), (4), (5)).
11. The set of polynomials of degree exactly n is not a subspace in Pn.
12. Pn is a subspace of C[a, b].
13. The set {f ∈ C[a, b] | f(b) = 0} is a subspace of C[a, b].
Exercise. Justify the statements above.

Recall that the intersection of two sets consists of all common elements.
In particular:
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Definition 4. Let U,W two subspaces of V . Then their intersection U ∩W
consists of all vectors x that belong to both U and W :

U ∩W = {x |x ∈ U and x ∈W}

Exercise. Show that the intersection of two subspaces is also a subspace.
Example. Consider two planes U,W in the space, containing the origin

O. If U 6= W then their intersection is a line containing O.
The union of two subspaces is not necessarily a subspace. But we may

consider the smallest subspace containing them:

Definition 5. Let U,W two subspaces of V . Their sum U +W consists of
all vectors u + w with u ∈ U and w ∈W :

U +W = {u + w |u ∈ U, w ∈W}

Exercise. Show that the sum U +W of two subspaces is also a subspace.
Examples.

1. Consider two lines U,W in the space R3, passing thorough the origin. If
U 6= W then U + W is the plane containing the two lines. If U = W then
their sum is U + U = U .
2. Consider a line U and a plane W in the space R3, both passing thorough
the origin. If U is not contained in W then U + W is the whole space R3.
But if U ⊂W then U +W = W .

Exercise. Explain why the examples above are correct.

1.4. Linear Span. Let V be a vector space over the scalars F .

Definition 6. The vector x is linear combination of the vectors v1, . . . ,vr

means that

x = c1v1 + . . .+ crvr for some c1, . . . , cr ∈ F

Exercise. Show that if all v1, . . . ,vr belong to a subspace U of V , then
any linear combination of these vectors also belongs to the subspace U .

Definition 7. Let v1, . . . ,vr be vectors in V . The set of all linear combi-
nations of these vectors is called the subspace spanned by v1, . . . ,vr:

Sp(v1, . . . ,vr) = {c1v1 + . . .+ crvr | c1, . . . , cr ∈ F}

Exercise. Show that Sp(v1, . . . ,vr) is indeed a subspace.
Exercise. Show that Sp(v1, . . . ,vr) is the smallest subspace containing

all v1, . . . ,vr (in the sense that if all v1, . . . ,vr belong to a subspace U , then
necessarily Sp(v1, . . . ,vr) ⊂ U).

Note: it is sometimes useful to define the linear span of a possibly infinite
set S of vectors (S ⊂ V ). In this case, define

Sp(S) = {c1v1 + . . .+ ckvk |vj ∈ S, cj ∈ F, k ∈ Z+}
Warning: this formula does not hold for vector spaces with extra structure,
such as Banach or Hilbert spaces. But here is an equivalent definition which
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works: Sp(S) is the intersection of all subspaces containing S (this requires
a proof, not included here).

2. Bases of vector spaces

2.1. Linear dependence; linear independence.

Definition 8. A finite set of vectors v1, . . . ,vr ∈ V are called linearly
dependent if there is a nontrivial linear relation between them: there exist
some scalars c1, . . . , cr ∈ F not all zero so that their linear combination is
the zero vector:

c1v1 + . . .+ crvr = 0 where at least one cj 6= 0

Note: this means that (at least) one of the vectors v1, . . . ,vr belongs to
the span of the others. (Why?)

Examples.
1. If i = (1, 0), j = (0, 1) then Sp(i, j) = R2.
2. The vectors i, j, i− j are linearly dependent, and so are i, j, i− j, 2i. Then
Sp(i, j, i− j) = Sp(i, j, i− j, 2i) = Sp(i, j).
3. If u,v are two nonzero vectors in R3 then Sp(u,v) is the plane determined
by these two vectors if u 6 ‖v, and it is the line containing the vectors if u‖v
(in which case u,v are linearly dependent).

Exercise. Prove the statements above.

Remark 9. A useful observation: if two vectors are linearly dependent then
either they are scalar multiples of each other, or one of them is zero.

Indeed, let u,v ∈ V with cu + dv = 0 with not both c, d zero. Say c 6= 0
then dividing by c we have u + d

cv = 0 and adding the opposite u = −d
cv

hence u is a multiple of v. Furthermore, note that also d 6= 0 (otherwise we
would have u = 0) hence also v = − c

du. 2

Definition 10. A set of vectors v1, . . . ,vr ∈ V are called linearly indepen-
dent if they are not linearly dependent, or, in other words, if

c1v1 + . . .+ crvr = 0 implies c1 = 0, . . . , cr = 0

And more generally:

Definition 11. An (infinite) set of vectors S ⊂ V is called linearly inde-
pendent if all its finite subsets are linearly independent.

Remark 12. A linearly independent set cannot contain the zero vector.

Indeed, consider a collection v1 = 0, v2, . . . ,vr ∈ V . Then they are
linearly dependent, since we have c1v1 + c2v2 + . . .+ crvr = 0 for
c1 = 1, c2 = 0, . . . , cr = 0. 2

Examples.
4. The vectors (1, 0), (2, 1) ∈ R2 are linearly independent.
5. The vectors (1, 0, 0), (0, 1, 0), (0, 0, 1) ∈ R3 are linearly independent.
6. The vectors (1, 0), (0, 1), (−2, 3) ∈ R2 are linearly dependent.
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7. The polynomials 1, t, t2 ∈ P2 are linearly independent.
8. The polynomials 1, t, t2, . . . , tn . . . ∈ P are linearly independent.
9. The polynomials 1 + t+ t2, t2 − 1, 3t are linearly independent in P.
Exercise. Prove the statements above.

Remark 13. Consider a collection of vectors x1, . . . ,xk ∈ V , all xj 6= 0.
Then x1, . . . ,xk ∈ V are linearly dependent if and only if one of them belongs
to the span of the others.

The proof is left to the reader.

2.2. Basis and Dimension.

Definition 14. A set of vectors S ⊂ V is a basis of V if:
(i) it is linearly independent and
(ii) its span equals V .

In the Examples above, the vectors in Examples 1,2,4,5 above form bases
for the stated vector spaces, but this is not true for Example 3.

Theorem 15. Any vector space has a basis. Moreover, all the basis of V
have the same number of elements, which is called the dimension of V .

(The proof will not be discussed here; basically one chooses a maximal
set of linearly independent vectors.)

Remark: if the dimension of V is infinite, we can also distinguish between
different magnitudes of infinity...but this has to wait until next semester.

Examples
0. R3 is a vector space over R of dimension 3, with a basis consisting of

the vectors e1 = (1, 0, 0), e2 = (0, 1, 0), e3 = (0, 0, 1). Indeed, any x ∈ R3

having coordinates x = (x1, x2, x3) can be written as a linear combination

x = (x1, x2, x3) = x1e1 + x2e2 + x3e3

and the vectors e1, e2, e3 are linearly independent.
1. Rn is a vector space over R of dimension n, with a basis consisting of

the vectors

(6) e1 = (1, 0, . . . , 0), e2 = (0, 1, 0 . . . , 0), . . . , en = (0, 0, . . . 0, 1)

Indeed, any x ∈ Rn having coordinates x = (x1, . . . xn) can be written as a
linear combination

x = (x1, . . . xn) = x1e1 + x2e2 + . . .+ xnen

Also, the vectors e1, . . . , en are linearly independent (why?).
The basis (6) is called the standard basis of Rn.
2. Similarly, Cn = {(z1, . . . zn) | zj ∈ C} is a vector space over C of

dimension n, with a basis consisting of the vectors (6).
3. Pn(F ), see (3), is a vector space over the field of scalars F , of dimension

n+ 1, and a basis is 1, t , t2, . . . tn.
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4. The set of all polynomials with coefficients in F , see (4), (5) is a vector
space over the field of scalars F , has infinite dimension.

Exercise. Justify the statements in the examples above.

Let V be a vector space over F and let v1,v2, . . . ,vn be a basis. Since
Sp(v1,v2, . . . ,vn) = V then any x ∈ V belongs to Sp(v1,v2, . . . ,vn), hence
has the form

(7) x = c1v1 + c2v2 + . . .+ cnvn for some scalars c1, c2, . . . , cn

which is called the representation of the vector x in the basis v1,v2, . . . ,vn,
and the scalars c1, . . . , cn are called the coordinates of the vector in the given
basis.

The representation of a vector in a given basis is unique. Indeed,
suppose that x can be represented as (7), and also as

(8) x = d1v1 + d2v2 + . . .+ dnvn for some scalars d1, d2, . . . , dn

Then subtracting (7) and (8) we obtain

c1v1 + c2v2 + . . .+ cnvn − (d1v1 + d2v2 + . . .+ dnvn) = 0

which (using the properties of the operations in a vector space) can be
written as

(c1 − d1)v1 + (c2 − d2)v2 + . . .+ (cn − dn)vn = 0

and since v1,v2, . . . ,vn are linearly independent, then necessarily (c1−d1) =
0, . . . , (cn − dn) = 0 therefore c1 = d1, . . . , cn = dn. 2

Once a basis is specified, operations are done coordinate-wise:

Remark 16. Let v1,v2, . . . ,vn be a basis of V . If x,y ∈ V then x =∑n
j=1 cjvj, y =

∑n
j=1 djvj for some cj , dj ∈ F . It follows that

x + y =
n∑

j=1

(cj + dj)vj , αx =
n∑

j=1

αcjvj , for any α ∈ F

Theorem 17. If a vector space V has finite dimension n, then any collection
consisting of n+ 1 vectors is linearly dependent.

Why: Let v1, . . . ,vn be a basis for V . Let x1, . . . ,xn,xn+1 ∈ V and show
they are linearly independent.

We will express v1, . . . ,vn in terms of x1, . . . ,xn.
If one of xj equals 0, then x1, . . . ,xn,xn+1 ∈ V are linearly dependent,

and the Theorem is proved. We only need to consider the case when all
xj 6= 0.

Since v1, . . . ,vn is a basis then

x1 = c1v1 + . . .+ cnvn for some c1, . . . , cn ∈ F
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Since x1 6= 0 then at least one scalar cj is not zero, say c1 6= 0 (we can
always renumber the vj) . We can solve for v1 in terms of x1,v2, . . . ,vn:

(9) v1 =
1

c1
x1 −

c2
c1

v2 − . . .−
cn
c1

vn ≡ c̃1x1 + c̃2v2 + . . .+ c̃nvn

We repeat the argument for v2:

x2 = d1v1 + . . .+ dnvn for some d1, . . . , dn ∈ F
and replacing v1 from (9) it follows that

(10) x2 = d̃1x1 + d̃2v2 + . . .+ d̃nvn

If all d̃2, . . . , d̃n are zero then x2,x1 are linearly dependent and the Theorem
is proved. Otherwise, one of them, say d̃2, is not zero, and we can solve (10)
for v2 in terms of x1,x2,v3, . . . ,vn:

v2 =
˜̃
d1x1 +

˜̃
d2x2 +

˜̃
d3v3 + . . .+

˜̃
dnvn

Continuing the argument, in the end we obtain v1, . . . ,vn as linear com-
binations of x1, . . . ,xn.

But xn+1 can be written as a linear combination of v1, . . . ,vn, hence as
a linear combination of x1, . . . ,xn which proves the theorem. 2

Example. Sp(1 + t+ t2, t2− 1, 3t) = P2. Hence 1 + t+ t2, t2− 1, 3t form
a basis for P2.
Indeed, by Example 9 of §2.1, the polynomials 1 + t + t2, t2 − 1, 3t are
linearly independent. Hence they span a 3-dimensional subspace in P2.
Since dimP2=3, then any polynomial in P2 belongs to Sp(1+t+t2, t2−1, 3t),
hence Sp(1 + t+ t2, t2 − 1, 3t) = P2. 2

Theorem 18. Every linearly independent set of vectors v1, . . . ,vr in a finite
dimensional vector space V can be completed to a basis of V .

How: If Sp(v1, . . . ,vr) = V then v1, . . . ,vr form a basis and we are done.
Otherwise, there is some vector in V , call it vr+1, that cannot be written

as a linear combination of v1, . . . ,vr. Then this means that v1, . . . ,vr,vr+1

is a linearly independent set (convince yourselves!).
We then repeat the steps above with v1, . . . ,vr,vr+1.
The procedure must end, since by Theorem 17 we can have at most dimV

linearly independent vectors. 2

2.2.1. More examples.
1. Let u = (1, 2,−3) ∈ R3. What is Sp(u)?
Solution: Sp(u) = {cu | c ∈ R} is the line through O in the direction of

u.
2. Let u = (1, 2,−3),v = (2, 4,−6) ∈ R3. What is Sp(u,v)?
Solution: note that v = 2u hence Sp(u,v) = Sp(u, 2u) = Sp(u) = as

above.
3. Let u = (1, 2,−3),w = (1, 1, 0) ∈ R3. What is Sp(u,w)?
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Solution: (think geometrically) if u,w are dependent, then they are multi-
ple of each other (by Remark 9), and it is obvious by inspection that it is not
case. Hence Sp(u,w) = the smallest subspace containing two independent
vectors = the plane (through O) containing them.

4. Let u = (1, 2,−3),v = (2, 4,−6),w = (1, 1, 0) ∈ R3. What is
Sp(u,v,w)? Find a basis for this subspace. What is its dimension?

Solution: since v = 2u then Sp(u,v,w) = Sp(u, 2u,w) = Sp(u,w) =
the plane containing u,w.

Basis: clearly u,w are independent and span Sp(u,v,w) so they form a
basis. Dimension 2.

What if we are not quite sure if u,w are independent? Let’s check:
suppose that for some scalars c, d we have cu + dw = 0. But cu + dw =
c(1, 2,−3)+d(1, 1, 0) = (c+d, 2c+d,−3c) = (0, 0, 0) hence c+d = 0, 2c+d =
0− 3c = 0 hence c = d = 0, independent!

5. Show that x = (1, 0, 0), y = (1, 1, 0), z = (1, 1, 1) form a basis for R3.
Do they form a basis for C3 (as a complex vector space)?

6. Show that C is a real vector space, find a basis and its dimension.
Same questions for C2 and for Pn(C).

2.3. Direct sum of subspaces. Let V be a vector space over the field F
(which for us is either R or C).

Recall that if U,W are two subspaces of V then their sum is defined as

U +W = {u + w |u ∈ U, w ∈W}
and that U +W is also a subspace of V .

Definition 19. If U ∩W = {0} then their sum U +W is called the direct
sum of the subspaces U and W , denoted by U

⊕
W .

Examples. Let V = R3.
1) If U and W are two distinct planes through O then U + W = R3, and
the sum is not direct (the intersection of two distinct planes is a line).
2) If U and W are two distinct lines through O then U + W = U

⊕
W =

their plane.
3) If U is a line and W is a plane through O, then U + W = U

⊕
W =

the whole space if U 6⊂ W , and U +W = W is U ⊂ W and the sum is not
direct.

Theorem 20. Existence of the complement space. If U is a subspace
of V , then there exists W a subspace of V so that U

⊕
W = V .

Proof.
By Theorem 15, U has a basis v1, . . . ,vr. By Theorem 18, this can be com-

pletes to a basis v1, . . . ,vr,vr+1, . . . ,vn of V . Take W = Sp(vr+1, . . . ,vn).
It only remains to show that U ∩W = {0} and that U +W = V , which are
left to the reader. 2

Examples.
1. Let U be the x1-axis in V = R2 (the x1x2-plane). Any different line W
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(through O) is a complement of U . (Why?)
2. Let U be the x1-axis in V = R3. Any plane (through O) not containing
W is a complement of U . (Why?)

Theorem 21. Let U,W be two subspaces of V with U ∩W = {0}. Then if
u1, . . . ,un is a basis of U , and w1, . . . ,wm is a basis of W then
u1, . . . ,un,w1, . . . ,wm is a basis of U

⊕
W .

In particular

dimU
⊕

W = dimU + dimW

The proof is left as an exercise.
Remark: more is true, namely

dim(U +W ) = dimU + dimW − dimU ∩W

Remark 22. If V = U
⊕
W then any x ∈ V can be uniquely decomposed

as x = u + w with u ∈ U,w ∈W .

The proof is left as an exercise.

2.4. Appendix: how it is shown that any vector space has a basis.
We assume, of course, that the vector space contains nonzero elements.

For finite dimensional vector spaces this is quite easy. Assume that any
independent set in V contains no more than a finite number of vectors, say
n. We can then construct a basis as follows. Let v1 be any nonzero vector
in V . If any x ∈ V is linear dependent on v1 then we are done, v1 is a basis.
Otherwise, let v2 be any vector independent of v1. We continue this way,
and the construction need to end after at most n steps.

For infinite dimensional vector spaces we cannot give an algorithm for
constructing a basis of any vector space, and the proof turns out to depend
on the axiom of choice. This means that there are infinite-dimensional
vector spaces for which we cannot ”write down” an explicit basis, though
these exist.

The proof below2 shows even more, that any independent subset can be
completed to a basis.

Theorem 23. Let V be a vector space, L ⊂ V an independent set and
S ⊃ L a spanning set (i.e. Sp(S) = V ).

Then V has a basis B so that L ⊂ B ⊂ S.

Proof. Consider the collection of all independent subsets M of V in-
between L and S, namely the set

J = {M ⊂ V |M independent set, L ⊂M ⊂ S}
which is not empty since L ∈ J . J is (partially) ordered with respect to
the inclusion of sets.

2Reference: http://www.proofwiki.org/wiki/Vector Space has Basis.
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Any totally ordered subset T ⊂ J has a maximal element, namely
Mmax = ∪M∈TM . We need to show that Mmax ∈ J . Clearly L ⊂Mmax ⊂
S. To show that Mmax is independent, let v1, . . . ,vr ∈ Mmax so that
c1v1 + . . . + crvr = 0 for some c1, . . . , cr ∈ F . We have vk ∈ Mk for some
Mk ∈ T . Since T is totally ordered, then one of the M1, . . . ,Mr contains all
the others, say, Mk ⊂ M1 for all k = 2, 3 . . . r. Therefore v1, . . . ,vr ∈ M1,
and since M1 is independent then all ck = 0.

By Zorn’s Lemma then J has a maximal element B. Since B ∈ J
then B is independent. It spans V , otherwise there would be an x ∈ S \B,
independent of B, therefore B∪{x} ∈ J is bigger than B, which contradicts
the maximality of B.


