
DETERMINANTS

1. Solving linear eqations

The simplest type of equations are linear. The equation
(1) ax = b

is a linear equation, in the sense that the function f(x) = ax is linear1 and it is equated to a value b, in
the sense that we ask: for which values of the variable x does the function attains the value b. The answer
is: for a unique x, namely b/a if a 6= 0. But if a = 0, then there is no such x if b 6= 0, while if b = 0 then
there are in�nitely many x satisfying this equation (all x in fact).

We can have more equations with more unknowns. Here is another example: solve the linear system of
equations

(2) a11x1 + a12x2 = b1
a21x1 + a22x2 = b2

in the sense that we need to �nd all the values of ordered paris of unknowns (x1, x2) for which the linear
transformation which takes (x1, x2) to the ordered pair (a11x1 + a12x2, a21x1 + a22x2) has values equal
to (b1, b2). A little work and ingenuity leads us to the formulas

(3) x1 =
−a12b2 + a22b1
a11a22 − a12a21

, x2 =
a11b2 − a21b1
a11a22 − a12a21

which means that if a11a22 − a12a21 6= 0 then the system (2) has a unique solution. Otherwise, we can
easily �nd that, just as in the previous example, we can have either no solutions (say, if all aij = 0 and one
of the bi 6= 0), or in�nitely many (say, if all aij , bj = 0); it is not immidiately clear that the existence of a
unique solution is ruled out in this case.

A general linear system of m linear equations with n unknowns, has the form

(4)

a11x1 + a12x2 + . . .+ a1nxn = b1
a21x1 + a22x2 + . . .+ a2nxn = b2
...
am1x1 + am2x2 + . . .+ amnxn = bm

which we need to solve for the unknowns (x1, x2, . . . , xn). It will turn out that solutions of a general (4)
behave much like in the previous simple examples: they can be given by algebraic operations, like (3), and
the following situations can occur:

1. the system is compatible, i.e. it has solutions, in which case either
1a. the system is determinate, i.e. the solution is unique, or
1b. the system is indeterminate, i.e. there are more than one solutions (there will be in�nitely many)

or,
2. the system is incompatible, i.e. it has no solutions.
In the case the system is compatible we also want to describe its solutions.

Finally, what kind of numbers can aij , bj xj be, and can they be more general mathematical objects? Just
like in the example (2), (3), general linear systems and their solutions can be written using the four basic

1From now on, ony functions of the tyoe f(x) = ax will be called linear, while functions of the type f(x) = ax+ n will be
called linear-a�ne.
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arithmetic operations, satisfying the usual properties of commutativity, associativity, and distributivity: a
set endowed with two operations which have the usual properties of addition and multiplication of real
numbers is called a �eld. For example, the set of real numbers, R is, of course, a �eld, and so is the set of
complex numbers C, and, perhaps a less familiar, but very useful, is the residue classes modulo a prime
number, Zp.

2. Determinants

We noticed the curious phenomenon that the formula (3) for the general solution of two equations with
two unknowns has the same expression at the denominator of both x1 and x2, hence if this special number
is not zero, then the system is determinate. With some work, one can �nd a similar phenomenon for a
system of 3 equations with 3 unknowns: the system

(5)
a11x1 + a12x2 + a13x3 = b1
a21x1 + a22x2 + a23x3 = b2
a31x1 + a32x2 + a33x3 = b3

has the solution

(6) x1 =
a12a23b3 − a12a33b2 − a13a22b3 + a13a32b2 + a22a33b1 − a23a32b1

a11a22a33 − a11a23a32 − a12a21a33 + a12a23a31 + a13a21a32 − a13a22a31
,

x2 = −
a11a23b3 − a11a33b2 − a13a21b3 + a13a31b2 + a21a33b1 − a23a31b1

a11a22a33 − a11a23a32 − a12a21a33 + a12a23a31 + a13a21a32 − a13a22a31
,

x3 =
a11a22b3 − a11a32b2 − a12a21b3 + a12a31b2 + a21a32b1 − a22a31b1

a11a22a33 − a11a23a32 − a12a21a33 + a12a23a31 + a13a21a32 − a13a22a31
(see the Maple example to help with solving and writing up these formulas.)

In (6) the denominators are the same, again. Note that in (3) the denominator is made up od products
of two of the aij having a plus sign or a minus sign in front. In (6) the denominators are products of three
of the aij with some sign. You may also note that the products look like a1ia2ja3k where the numbers
i, j, k are some permutation of the numbers 1, 2, 3. And that all such possibilities are present. This is
called the determinant of the matrix formed by the aij ’s. You may note that the numerators also look like
determinants...they are! We will now de�ne the determinant of a general square matrix.

2.1. The de�nition of the determinant. A permutation of the set of numbers Sn = {1, 2, . . . , n} is a
function σ : Sn → Sn which is one-to-one2 and onto3. Therefore the numbers σ(1), σ(2), . . . , σ(n) are
just the numbers 1, 2, . . . , n written in a di�erent order.4

You may recall that the number of all possible permutations of {1, 2, . . . , n} is n! := 1 · 2 · 3 · . . . · n.
(Why?)

A simple notation for a permutation σ is (σ(1), σ(2), . . . , σ(n)).
Suppose we have a permutation σ : Sn → Sn. If for some i < j it happens that σ(i) > σ(j) then this

is called an inversion of σ. Consider for example, the permutation (4, 1, 3, 2). This means that σ(1) = 4,
σ(2) = 1, σ(3) = 3, σ(4) = 2. Since 4 = σ(1) > 1 = σ(2), this is an inversion, and so are 4 = σ(1) >
3 = σ(3), and 4 = σ(1) > 2 = σ(4), and 3 = σ(3) > 2 = σ(4).

Denote by N(σ) the number of inversions of the permutation σ.

2A one-to-one function (an injection) is a function σ which takes each value no more than once, that is, if σ(x1) = σ(x2)
then necessarily x1 = x2.

3A function σ : A → B is called onto B (it is surjective) if it takes every value in B, that is, for all y ∈ B there is (at least
one) x ∈ A so that σ(x) = y.

4A function σ : A→ B which is one-to-one and onto (a bijection) takes every value in B exactly once.
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The signature of a permutation σ is sgn(σ) = (−1)N(σ). That is, sgn(σ) = 1 if σ has an even number
of inversions and sgn(σ) = −1 if it has an odd number.

Example. Let us consider all the permutations of S2 = {1, 2}. There are 2! = 2 possible permu-
tations: σ0, the permutation 1, 2 (the identity, which is always a permutation) with signature 1 and σ1,
the permutation 2, 1, with signature −1. Note that the denominator in (3) has the pleasant expression
a11a22 − a12a21 = sgn(σ0)a1σ0(1)a2σ0(2) + sgn(σ1)a1σ1(1)a2σ1(2).

Exercise. Find all the permutations of S3 = {1, 2, 3} and their signature. Find a formula for the
denominator in (6).

De�nition. The determinant of an n× n (square!) matrix

(7) A =


a11 a12 . . . a1n
a21 a22 . . . a2n

...
an1 an2 . . . ann


is the number

(8) detA =

∣∣∣∣∣∣∣∣∣
a11 a12 . . . a1n
a21 a22 . . . a2n

...
an1 an2 . . . ann

∣∣∣∣∣∣∣∣∣ =
∑

all permuations σ

sgn(σ) a1σ(1)a2σ(2) . . . anσ(n)

Remark 1. (i) Each product a1σ(1)a2σ(2) . . . anσ(n) contains exactly one aij from each row and from each
column of the matrix A.

(ii)With this geometric view, and inversion happens when the position of aiσ(i) in thematrixA is higher that
that of ajσ(j) (this means i < j) and aiσ(i) is situated to the right of ajσ(j) (which means that σ(i) > σ(j)).

Exercise. Show that the denominators in (3), (6) equal det[aij ]. Show that the numerators are also
determinants.

2.2. Properties of determinants.

2.2.1. Determinant of the transpose matrix. Recall that the transpose, AT , of a matrix A is the matrix
having columns equal to the rows of A, in the same order:

if A = [aij ] =


a11 a12 . . . a1n
a21 a22 . . . a2n

...
an1 an2 . . . ann

 then AT = [aji] =


a11 a21 . . . an1
a12 a22 . . . an2

...
a1n a2n . . . ann


Of course, (AT )T = A.
By the de�nition (??) we have detAT =

∑
σ (−1)N(σ)aσ(1)1aσ(2)2 . . . aσ(n)n. Each term in the sum can

be reordered: aσ(1)1aσ(2)2 . . . aσ(n)n = a1τ(1)a2τ(2) . . . anτ(n) where τ is the permutation so that τ(j) = i
whenever σ(i) = j (it is the inverse function). Noting that N(σ) = N(τ) it follows that

detAT = detA

2.2.2. Antisymmetry in rows and columns: If we exchange two columns (or two rows), the determinant
changes sign:
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∣∣∣∣∣∣∣∣∣
a11 a12 . . . aj1 . . . ak1 . . . a1n
a21 a22 . . . aj2 . . . ak2 . . . a2n

...
...

an1 an2 . . . ajn . . . akn . . . ann

∣∣∣∣∣∣∣∣∣ = −
∣∣∣∣∣∣∣∣∣
a11 a12 . . . ak1 . . . aj1 . . . a1n
a21 a22 . . . ak2 . . . aj2 . . . a2n

...
...

an1 an2 . . . akn . . . ajn . . . ann

∣∣∣∣∣∣∣∣∣
In particular

Corollary 2. If two columns (or two rows) are equal, then the determinant is zero.

2.2.3. Linearity in rows (and in columns). It is immediately seen from the de�nition (??) that

(9)

∣∣∣∣∣∣∣∣∣
a11 a12 . . . αbj1 + βcj1 . . . a1n
a21 a22 . . . αbj2 + βcj2 . . . a2n

...
...

an1 an2 . . . αbjn + βcjn . . . ann

∣∣∣∣∣∣∣∣∣ =

α

∣∣∣∣∣∣∣∣∣
a11 a12 . . . bj1 . . . a1n
a21 a22 . . . bj2 . . . a2n

...
...

an1 an2 . . . bjn . . . ann

∣∣∣∣∣∣∣∣∣+ β

∣∣∣∣∣∣∣∣∣
a11 a12 . . . cj1 . . . a1n
a21 a22 . . . cj2 . . . a2n

...
...

an1 an2 . . . cjn . . . ann

∣∣∣∣∣∣∣∣∣
In particular, a common factor can be extracted from a column (or row):∣∣∣∣∣∣∣∣∣

a11 a12 . . . αbj1 . . . a1n
a21 a22 . . . αbj2 . . . a2n

...
...

an1 an2 . . . αbjn . . . ann

∣∣∣∣∣∣∣∣∣ = α

∣∣∣∣∣∣∣∣∣
a11 a12 . . . bj1 . . . a1n
a21 a22 . . . bj2 . . . a2n

...
...

an1 an2 . . . bjn . . . ann

∣∣∣∣∣∣∣∣∣
And if α = 0:

Corollary 3. If a column (or a row) consists only of zeros, then the determinant is zero.

2.2.4. Adding to a column a multiple of another column.∣∣∣∣∣∣∣∣∣
a11 a12 . . . aj1 + λak1 . . . a1n
a21 a22 . . . aj2 + λak2 . . . a2n

...
...

an1 an2 . . . ajn + λakn . . . ann

∣∣∣∣∣∣∣∣∣ =
∣∣∣∣∣∣∣∣∣
a11 a12 . . . aj1 . . . a1n
a21 a22 . . . aj2 . . . a2n

...
...

an1 an2 . . . ajn . . . ann

∣∣∣∣∣∣∣∣∣
2.3. Expansion of a determinant with respect to the a row (or column). Minors. Fix some row, say
the ith one. In the sum (8) collect all the terms containing aij ; we obtain aijAij where Aij is a sum or
di�erence of n− 1 elements a`k where ` 6= i and j 6= k. Thus Aij is the same if we replace the row i and
column j with anything, say with 0’s. Aij is called the cofactor of aij in the determinant detA.

Fis a row, i. Collecting all the terms containing ai1, then ai2 etc. formula (8) becomes

(10) detA = ai1Ai1 + ai2Ai2 + . . .+ ainAin

called the expansion of the determinant along the row i.
We can similarly expand along a column j:

(11) detA = a1jA1j + a2jA2j + . . .+ anjAnj
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We next show how to express the cofactors in terms of determinants of order n−1; thus we can evaluate
determinants by reducing the order.

Denote by Mij the determinant of the matrix obtained from A by deleting the row i and column j. Mij

is called a minor.

Theorem 4. The cofactors are expressed in terms of minors as

Aij = (−1)i+jMij

As a consequence

detA = (−1)i+1ai1Mi1 + (−1)i+2ai2Mi2 + . . .+ (−1)i+nainMin

and
detA = (−1)1+ja1jM1j + (−1)2+ja2jM2j + . . .+ (−1)n+janjMnj

Indeed, clearly A11 =M11. For other i, j in the matrix A we move the row i until it gets to position 1,
being careful to preserve the order of the rows: we need i−1 switches with the nearest upper row. Similarly,
we switch columns j− 1 times. The minor in position 1, 1 of the new matrix equals (−1)i+j−2Mij , hence
our formula. 2

Examples.
Determinants of order two: ∣∣∣∣ a11 a12

a21 a22

∣∣∣∣ = a11a22 − a12a21

To calculate determinants of order three we can expand along any row or column. Say we choose to
expand along the second row:∣∣∣∣∣∣

a11 a12 a13
a21 a22 a23
a31 a32 a33

∣∣∣∣∣∣ = −a21
∣∣∣∣ a12 a13
a32 a33

∣∣∣∣+ a22

∣∣∣∣ a11 a13
a31 a33

∣∣∣∣− a23 ∣∣∣∣ a11 a12
a31 a33

∣∣∣∣
The determinant of a diagonal matrix: assume all aij = 0 for i 6= j∣∣∣∣∣∣∣∣∣

a11 0 . . . 0
0 a22 . . . 0
...
0 0 . . . ann

∣∣∣∣∣∣∣∣∣ = a11a22 . . . ann

More generally, the determinant of a (upper, or lower) triangular matrix:

det


a11 a12 . . . a1n
0 a22 . . . a2n
...
0 0 . . . ann

 = a11a22 . . . ann = det


a11 0 . . . 0
a21 a22 . . . 0

...
an1 an2 . . . ann


2.4. Testing linear dependence of vectors in Rn. Suppose we have k vectors in Rn:

xi = (ai1, ai2, . . . , ain), i = 1, 2 . . . , k

and the question is to determine if they are linearly dependent or not. If one of them is 0, then they are
dependent, so in the following we assume they are all not zero.

If k > n+ 1 then they are linearly dependent (why?). So assume k 6 n.
Assume they are dependent. Then one of them is a linear combination of the others, sayxk =

∑k−1
i=1 λixi.

Let us form the matrix A = [aij ]. Is may not be a square matrix, but it contains lots of square matrices:
choose any k columns then we have a k × k matrix. All their determinants are zero by §2.2.4 and Corol-
lary 3.

Conversely, if we �nd some k × k determinant not zero, then our k vectors are linearly independent.
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2.5. Cramer’s rule. We �rst note that

(12) a1kA1j + a2kA2j + . . . ankAnj = 0 if k 6= j

Indeed, by (11) this is the determinant of a matrix obtained from A by replacing its column j by a copy of
its column k; its determinant is zero by Corollary 2.

We can now solve systems with the same number of equations and unknowns:

(13)

a11x1 + a12x2 + . . .+ a1nxn = b1
a21x1 + a22x2 + . . .+ a2nxn = b2
...
an1x1 + an2x2 + . . .+ annxn = bn

if we assume det[aij ] 6= 0.
If x1, x2, . . . , xn are numbers solving this system, we multiply the �rst equation by the cofactor A11,

the second one by A21 and so on, and we add these, obtaining

(14) (a11A11 + a21A21 + . . .+ an1An1)x1

+ (a12A11 + a22A21 + . . .+ an1An2)x2

+ . . .+ (a1nA11 + a2nA21 + . . .+ annAn1)xn

= A11b1 +A21b2 + . . .+An1bn

The coe�cient of x1 in (14) equals detA by (10), and the coe�cients of x2, . . . , xn are zero by (12). The
right hand side of (14) is the deteminant of the matrix B1 obtained from A by replacing its �rst column
with the numbers b1, b2 . . . , bn. We obtained

x1 =
detB1

detA

We proceed similarly for all j = 2, 3, . . . , n by multiplying the �rst equation by A1j , the second one by
A2j and adding them up:

xj =
detBj
detA

, j = 1, 2, . . . , n

where Bj is the matrix obtained from A by replacing its jth column with b1, b2 . . . , bn.
We should still show that these expressions are indeed solutions, which we leave as an exercise.

2.6. Quasi-triangular matrices. Suppose the matrix A has lots of zeroes, say:

A =



a11 . . . a1k 0 . . . 0
...

...
ak1 . . . akk 0 . . . 0
ak+1,1 . . . ak+1,k ak+1,k+1 . . . ak+1,n

...
an1 . . . ank an,k+1 . . . ann


=

 B | 0
− − −
C | D



where B is a k × k matrix and D is (n− k)× (n− k). Show the nice formula

detA = detB detD

2.7. Digression: the fundamental theorem of algebra.
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2.7.1. Polynomials of degree two: roots and factorization. Consider polynomials of degree two, with real

coe�cients: p(x) = ax2 + bx+ c. It is well known that p(x) has real solutions x1,2 =
−b±

√
b2 − 4ac

2a
if

b2 − 4ac ≥ 0 (where x1 = x2 when b2 − 4ac = 0), and p(x) has no real solutions if b2 − 4ac < 0.
When the solutions are real, then the polynomial factors as

ax2 + bx+ c = a(x− x1)(x− x2)
In particular, if x1 = x2 then p(x) = a(x − x1)

2 and x1 is called a double root; x1 is said to have
multiplicity two. It is convenient to say that also in this case p(x) has two roots.

If, on the other hand, if p(x) has no real roots, then p cannot be factored within real numbers, and it is
called irreducible (over the real numbers).

2.7.2. Complex numbers and factorization of polynomials of degree two. If p(x) = ax2+bx+c is irreducible
this means that b2 − 4ac < 0 and we cannot take the square root of this quantity in order to calculate the
two roots of p(x). However, writing b2 − 4ac = (−1) (−b2 + 4ac) and introducing the symbol i for

√
−1

we can write the zeroes of p(x) as

x1,2 =
−b± i

√
−b2 + 4ac

2a
=
−b
2a
± i
√
−b2 + 4ac

2a
∈ R+ iR = C

Considering the two roots x1, x2 complex, we can still factor ax2 + bx+ c = a(x− x1)(x− x2), only
now the factors have complex coe�cients. Within complex numbers every polynomial of degree two is
reducible!

Note that the two roots of a quadratic polynomial with real coe�cients are complex conjugate: if a, b, c ∈
R and x1,2 6∈ R then x2 = x1.

2.8. The fundamental theorem of algebra. It is absolutely remarkable that any polynomial can be
completely factored using complex numbers:

Theorem 5. The fundamental theorem of algebra
Any polynomial p(x) = anx

n + an−1x
n−1 + . . .+ a0 with coe�cients aj ∈ C can be factored

(15) anx
n + an−1x

n−1 + . . .+ a0 = an(x− x1)(x− x2) . . . (x− xn)
for a unique set of complex numbers x1, x2, . . . , xn (not necessarily distinct), called the roots of the polynomial
p(x).

Remark. With probability one, the zeroes x1, . . . , xn of polynomials p(x) are distinct. Indeed, if x1 is
a double root (or has higher multiplicity) then both relations p(x1) = 0 and p′(x1) = 0 must hold. This
means that there is a relation between the coe�cients a0, . . . an of p(x) (the multiplet (a0, . . . an) belongs
to an n dimensional surface in Cn+1).

2.8.1. Factorization within real numbers. If we want to restrict ourselves only within real numbers then
we can factor any polynomial into factors of degree one or two:

Theorem 6. Factorization within real numbers
Any polynomial of degree n with real coe�cients can be factored into factors of degree one or two with real

coe�cients.

Theorem 6 is an easy consequence of the (deep) Theorem 5. Indeed, �rst, factor the polynomial in com-
plex numbers (15). Then note that the zeroes x1, x2, . . . , xn come in pairs of complex conjugate numbers,
since if z satis�es p(z) = 0, then also its complex conjugate z satis�es p(z) = 0. Then each pair of factors
(x− z)(x− z) must be replaced in (15) by its expanded value:

(x− z)(x− z) = x2 − (z + z)x+ |z|2

which is an irreducible polynomial of degree 2, with real coe�cients. 2
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2.9. The Vandermonde determinant. Show that

Vn(a1, a2, . . . , an) =

∣∣∣∣∣∣∣∣∣∣∣

1 1 . . . 1
a1 a2 . . . an
a21 a22 . . . a2n
...

an−11 an−12 . . . an−1n

∣∣∣∣∣∣∣∣∣∣∣
=
∏
i<j

(aj − ai)

To see that, �rst replace an by an unknown x:

Vn(a1, a2, . . . , x) =

∣∣∣∣∣∣∣∣∣∣∣

1 1 . . . 1
a1 a2 . . . x
a21 a22 . . . x
...

an−11 an−12 . . . xn−1

∣∣∣∣∣∣∣∣∣∣∣
Expanding Vn(a1, a2, . . . , x) along the last column we see that Vn(a1, a2, . . . , x) is a polynomial in x of
degree (at most) n − 1, with the leading coe�cient equal to Vn−1(a1, a2, . . . , an−1) . For x = a1 the
determinant vanishes, and also for x = a2, . . . , x = an−1. Therefore Vn(a1, a2, . . . , x) = Cn(x−a1)(x−
a2) . . . (x − an−1) where Cn is the coe�cient of xn−1. We noted that Cn = Vn−1(a1, a2, . . . , an−1),
therefore

Vn(a1, a2, . . . , x) = Cn(x− a1)(x− a2) . . . (x− an−1)Vn−1(a1, a2, . . . , an−1)
Induction on n �nishes the proof.
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