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4. Eigenvalues and Eigenvectors

4.1. Motivation.

4.2. Diagonal matrices. Perhaps the simplest type of linear transforma-
tions are those whose matrix is diagonal (in some basis). Consider for ex-
ample the matrices

(1) M =

[
a1 0
0 a2

]
, N =

[
b1 0
0 b2

]
It can be easily checked that

αM + βN =

[
αa1 + βb1 0

0 αa2 + βb2

]
and

M−1 =

[ 1
a1

0

0 1
a2

]
, Mk =

[
ak1 0
0 ak2

]
, MN =

[
a1b1 0

0 a2b2

]
Diagonal matrices behave like the bunch of numbers on their diagonal!

The linear transformation consisting of multiplication by the matrix M
in (1) dialates a1 times vectors in the direction of e1 and a2 times vectors
in the direction of e2.

In this chapter we will see that most linear transformations do have diag-
onal matrices in a special basis, whose elements are called the eigenvectors
of the transformation. We will learn how to find these bases. Along the
special directions of the eigenvectors the transformation just dialation by a
factor, called eigenvalue.

4.3. Example: solving linear differential equations. Consider the sim-
ple equation

du

dt
= λu

which is linear, homogeneous, with constant coefficients, and unknown func-
tion u(t) ∈ R (or in C). Its general solution is, as it is well known,
u(t) = Ceλt.

Consider now a similar equation, but where the unknown u(t) is a vector
valued function:

(2)
du

dt
= Mu, u(t) ∈ Rn, M is an n× n constant matrix

Inspired by the one dimensional case we look for exponential solutions.
Substituting in (2) u(t) = eλtv (where λ is a number and v is a constant
vector, both be determined) and dividing by eλt, we obtain that the scalar
λ and the vector v must satisfy

(3) λv = Mv

or

(4) (M − λI)v = 0
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If the null space of the matrix M − λI is zero, then the only solution of
(4) is v = 0 which gives the (trivial!) solution u(t) ≡ 0.

If however, we can find special values of λ for which N (M − λI) is not
null, then we found a nontrivial solution of (2). Such values of λ are called
eigenvalues of the matrix M , and vectors v ∈ N (M − λI), v 6= 0, are
called eigenvectors corresponding to the eigenvalue λ.

Of course, the necessary and sufficient condition for N (M − λI) 6= {0} is
that

(5) det(M − λI) = 0

Example. Let us calculate the exponential solutions for

(6) M =

[
−1 −3

0 2

]
Looking for eigenvalues of M we solve equation (5), which for (6) is

det

([
−1 −3

0 2

]
− λ

[
1 0

0 1

])
=

∣∣∣∣∣ −1− λ −3

0 2− λ

∣∣∣∣∣ = (−1− λ) (2− λ)

with solutions λ1 = −1 and λ2 = 2.
We next determine an eigenvector corresponding to the eigenvalue λ =

λ1 = −1: looking for a nozero vector v1 such that (M−λ1I)v1 = 0 we solve[
0 −3

0 3

] [
x1

x2

]
=

[
0

0

]
giving x2 = 0 and x1 arbitrary; therefore the first eigenvector is any scalar
multiple of v1 = (0, 1)T .

Similarly, for the eigenvalue λ = λ2 = 2 we solve (M − λ2I)v2 = 0:[
−3 −3

0 0

] [
y1

y2

]
=

[
0

0

]
which gives y2 = −y1 and y1 arbitrary, and the second eigenvector is any
scalar multiple of v2 = (1,−1)T .

We found two particular solutions of (2), (6), namely u1(t) = e−t(0, 1)T

and u2(t) = e2t(1,−1)T . These are functions belonging to the null space
of the linear operator Lu = du

dx −Mu, therefore any linear combination of
these two solutions also belongs to the null space: any C1u1(t) +C2u2(t) is
also a solution, for and constants C1, C2.

A bit later we will show that these are all the solutions.

4.4. Eigenvalues and eigenvectors: definition. Denote the set of n×n
(square) matrices with entries in F (= R or C)

Mn(F ) = {M |M = [Mij ]i,j=1,...n, Mij ∈ F}
A matrix M ∈Mn(F ) defines an endomorphism the vector space Fn(over

the scalars F ) by usual multiplication x 7→Mx.
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Note that a matrix with real entries can also act on Cn, since for any
x ∈ Cn also Mx ∈ Cn. But a matrix with complex non real entries cannot
act on Rn, since for x ∈ Rn the image Mx may not belong to Rn (while
certainly Mx ∈ Cn).

Definition 1. Let M be an n×n matrix acting on the vector space V = Fn.
A scalar λ ∈ F is an eigenvalue of M if for some nonzero vector v ∈ V ,

v 6= 0 we have

(7) Mv = λv

The vector v is called eigenvector corresponding to the eigenvalue λ.

Of course, if v is an eigenvector corresponding to λ, then so is any scalar
multiple cv (for c 6= 0).

4.5. The characteristic equation. Equation (7) can be rewritten asMv−
λv = 0, or (M − λI)v = 0, which means that the nonzero vector v belongs
to the null space of the matrix M − λI, and in particular this matrix is not
invertible. Using the theory of matrices, we know that this is equivalent to

det(M − λI) = 0

The determinant has the form

det(M − λI) =

∣∣∣∣∣∣∣∣∣
M11 − λ M12 . . . M1n

M21 M22 − λ . . . M2n
...

...
...

Mn1 Mn2 . . . Mnn − λ

∣∣∣∣∣∣∣∣∣
This is a polynomial in λ, having degree n. To understand why this is

the case, consider first n = 2 and n = 3.
For n = 2 the characteristic polynomial is∣∣∣∣ M11 − λ M12

M21 M22 − λ

∣∣∣∣ = (M11 − λ) (M22 − λ)−M12M21

= λ2 − (M11 +M22)λ+ (M11M22 −M12M21)

which is a quadratic polynomial in λ; the dominant coefficient is 1.
For n = 3 the characteristic polynomial is∣∣∣∣∣∣

M11 − λ M12 M13

M21 M22 − λ M23

M13 M23 M33 − λ

∣∣∣∣∣∣
and expanding along say, row 1,

= (−1)1+1 (M11−λ)

∣∣∣∣ M22 − λ M23

M23 M33 − λ

∣∣∣∣+(−1)1+2M12

∣∣∣∣ M21 M23

M13 M33 − λ

∣∣∣∣
+(−1)1+3M13

∣∣∣∣ M21 M22 − λ
M13 M23

∣∣∣∣
= −λ3 + (M11 +M22 +M33)λ2 + . . .
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which is a cubic polynomial in λ; the dominant coefficient is −1.
It is easy to show by induction that det(M − λI) is polynomial in λ,

having degree n, and that the coefficient of λn is (−1)n.

Definition 2. The polynomial det(M − λI) is called the characteristic
polynomial of the matrix M , and the equation det(M − λI) = 0 is called
the characteristic equation of M .

Remark. Some authors refer to the characteristic polynomial as det(λI −
M); the two polynomial are either equal or a −1 multiple of each other,
since det(λI −M) = (−1)n det(M − λI).

4.6. Geometric interpretation of eigenvalues and eigenvectors. Let
M be an n × n matrix, and T : Rn → Rn defined by T (x) = Mx be the
corresponding linear transformation.

If v is an eigenvector corresponding to an eigenvalue λ of M : Mv = λv,
then T expands or contracts v (and any vector in its direction) λ times (and
it does not change its direction!).

If the eigenvalue/vector are not real, a similar fact is true, only that
multiplication by a complex (not real) scalar cannot be easily called an
expansion or a contraction (there is no ordering in complex numbers), see
the example of rotations, §4.15.1.

The special directions of the eigenvectors are called principal axes of
the linear transformation (or of the matrix).

4.7. Diagonal matrices. Let D be a diagonal matrix:

(8) D =


d1 0 . . . 0
0 d2 . . . 0
...

...
...

0 0 . . . dn


To find its eigenvalues, calculate

det(D−λI) =

∣∣∣∣∣∣∣∣∣
d1 − λ 0 . . . 0

0 d2 − λ . . . 0
...

...
...

0 0 . . . dn − λ

∣∣∣∣∣∣∣∣∣ = (d1−λ1)(d2−λ2) . . . (dn−λn)

The eigenvalues are precisely the diagonal elements, and the eigenvector
corresponding to dj is ej (as it is easy to check). The principal axes of
diagonal matrices the coordinate axes. Vectors in the direction of one of
these axes preserve their direction and are stretched or compressed: if x =
cek then Dx = dkx.

Diagonal matrices are easy to work with: what was noted for the 2 × 2
matrices in §4.1 is true in general, and one can easily check that any power
Dk is the diagonal matrix having dkj on the diagonal.
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If p(x) is a polynomial

p(t) = akt
k + ak−1t

k−1 + . . .+ a1t+ a0

then for any square matrix M one can define p(M) as

(9) p(M) = akM
k + ak−1M

k−1 + . . .+ a1M + a0I

If D is a diagonal matrix (8) then p(D) is the diagonal matrix having
p(dj) on the diagonal. (Check!)

Diagonal matrices can be viewed as the collection of their eigenvalues!

Exercise. Show that the eigenvalues of an upper (or lower) triangular
matrix are the elements on the diagonal.

4.8. Similar matrices have the same eigenvalues. It is very easy to
work with diagonal matrices and a natural question arises: which linear
transformations have a diagonal matrix in a well chosen basis? This is the
main topic we will be exploring for many sections to come.

Recall that if the matrix M represents the linear transformation L : V →
V in some basis BV of V , and the matrix M̃ represents the same linear
transformation L, only in a different basis B̃V , then the two matrices are
similar: M̃ = S−1MS (where S the the matrix of change of basis).

Eigenvalues are associated to the linear transformation (rather than its
matrix representation):

Proposition 3. Two similar matrices have the same eigenvalues: if M,M̃, S
are n× n matrices, and M̃ = S−1MS then the eigenvalues of M and of M̃
are the same.

This is very easy to check, since suppose λ is an eigenvalue of M : Mv =
λv for some v 6= 0 Then S−1Mv = λS−1v, so (S−1MS)S−1v = λS−1v
which means that S−1v is an eigenvector of S−1MS corresponding to the
same eigenvalue λ. 2

4.9. Projections. Recall that projections do satisfy P 2 = P (we saw this
for projections in dimension two, and we will prove it in general).

Proposition 4. Let P be a square matrix satisfying P 2 = P . Then the
eigenvalues of P can only be 0 or 1.

Proof. Let λ be an eigenvalue; this means that there is a nonzero vector
v so that Pv = λv. Applying P to both sides of the equality we obtain
P 2v = P (λv) = λPv = λ2v. Using the fact that P 2v = Pv = λv it follows
that λv = λ2v so (λ − λ2)v = 0 and since v 6= 0 then λ − λ2 = 0 so
λ ∈ {0, 1}. 2

Example. Consider the projection of R3 onto the x1x2 plane. Its matrix

P =

 1 0 0
0 1 0
0 0 0


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is diagonal, with eigenvalues 1, 1, 0.

4.10. Trace, determinant and eigenvalues.

Definition 5. Let M be an n × n matrix, M = [Mij ]i,j=1,...,n. The trace
of M is the sum of its elements on the principal diagonal:

TrM =
n∑
j=1

Mjj

The following theorem shows that what we noticed in §4.5 for n = 2 is
true for any n:

Theorem 6. Let M be an n×n matrix, an let λ1, . . . , λn be its n eigenvalues
(complex, not necessarily distinct). Then

(10) detM = λ1λ2 . . . λn

and

(11) TrM = λ1 + λ2 + . . .+ λn

In particular, the traces of similar matrices are equal, and so are their
determinants.

Sketch of the proof.
The coefficients of any polynomial can be written in terms of its roots1,

and, in particular, it is not hard to see that

(12) p(x) ≡ (x− λ1)(x− λ2) . . . (x− λn)

= xn − (λ1 + λ2 + . . .+ λn)xn−1 + . . .+ (−1)n(λ1λ2 . . . λn)

In particular, p(0) = (−1)nλ1λ2 . . . λn.
The characteristic polynomial factors as

det(M − λI) = (−1)n(λ− λ1) . . . (λ− λn) ≡ (−1)np(λ)

(recall that the dominant coefficient of the characteristic polynomial is (−1)n)
and (10) follows.

To show (11) we expand the determinant det(M − λI) using minors and
cofactors keeping track of the coefficient of λn−1. As seen on the examples
in §4.5, only the first term in the expansion contains the power λn−1, and
continuing to expand to lower and lower dimensional determinants, we see
that the only term containing λn−1 is

(M11 − λ)(M22 − λ) . . . (Mnn − λ)

= (−1)nλn − (−1)n(M11 +M22 + . . .+Mnn)λn−1 + lower powers of λ

which compared to (12) gives (11). 2

1These are called Vieta’s formulas.
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4.11. The eigenvalue zero. As an immediate consequence of Theorem 6,
we can recognize invertible matrices by looking at their eigenvalues:

Corollary 7. A matrix M is invertible if and only if all its eigenvalues are
nonzero.

Note that a matrix M has an eigenvalue equal to zero if and only if its
null space N (M) is nontrivial. Moreover, the matrix M has dimN (M)
eigenvectors linearly independent which correspond to the eigenvalue zero.

4.12. Eigenvectors corresponding to different eigenvalues are inde-
pendent.

Theorem 8. Let M be an n× n matrix.
Let λ1, . . . λk a set of distinct eigenvalues of M and v1, . . . ,vk be corre-

sponding eigenvectors.
Then the set v1, . . . ,vk is linearly independent.
In particular, if M has entries in F = R or C, and all the eigenvalues

of M are in F and are distinct, then the set of corresponding eigenvectors
form a basis for Fn.

Proof.
Assume, to obtain a contradiction, that the eigenvectors are linearly de-

pendent: there are c1, . . . , ck ∈ F not all zero such that

(13) c1v1 + . . .+ ckvk = 0

Step I. We can assume that all cj are not zero, otherwise we just remove
those vj from (13) and we have a similar equation with a smaller k.

If after this procedure we are left with k = 1, then this implies c1v1 = 0
which contradicts the fact that not all cj are zero or the fact that v1 6= 0.

Otherwise, for k ≥ 2 we continue as follows.
Step II. Then we can solve (13) for vk:

(14) vk = c′1v1 + . . .+ c′k−1vk−1

where c′j = −cj/ck.
Applying M to both sides of (14) we obtain

(15) λkvk = c′1λ1v1 + . . .+ c′k−1λk−1vk−1

Multiplying (14) by λk and subtracting from (15) we obtain

(16) 0 = c′1(λ1 − λk)v1 + . . .+ c′k−1(λk−1 − λk)vk−1

Note that all c′j(λj − λk) are non-zero (since all c′1 are non-zero, and

λj 6= λk).
If k=2, then this implies v1 = 0 which is a contradiction.
If k > 2 we go to Step I. with a lower k.
The procedure decreases k, therefore it must end, and we have a contra-

diction. 2
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4.13. Diagonalization of matrices with linearly independent eigen-
vectors. Suppose that the M be an n×n matrix has n independent eigen-
vectors v1, . . . ,vn.

Note that, by Theorem 8, this is the case if we work in F = C and all
the eigenvalues are distinct (recall that this happens with probability one).
Also this is the case if we work in F = R and all the eigenvalues are real
and distinct.

Let S be the matrix with columns v1, . . . ,vn:

S = [v1, . . . ,vn]

which is invertible, since v1, . . . ,vn are linearly independent. Note that
Sek = vk for all k = 1, . . . , n.

Since Mvj = λjvj then

(17) MS = M [v1, . . . ,vn] = [Mv1, . . . ,Mvn] = [λ1v1, . . . , λnvn]

To identify the matrix on the right side of (17) note that S(λjej) = λjvj
so

[λ1v1, . . . , λnvn] = S[λ1e1, . . . , λnen] = SΛ, where Λ =


λ1 0 . . . 0
0 λ2 . . . 0
...

...
...

0 0 . . . λn


Relation (17) is therefore

MS = SΛ, or S−1MS = Λ = diagonal

Note that the matrix S which diagonalizes a matrix is not unique. For
example, we can replace any eigenvector by a scalar multiple of it. Also, we
can use different orders for the eigenvectors (this will result on a diagonal
matrix with the same values on the diagonal, but in different positions).

Example 1. Consider the matrix (6) for which we found the eigenvalues
λ1 = −1 and λ2 = 2 and the corresponding eigenvectors v1 = (0, 1)T .
v2 = (1,−1)T . Taking

S =

[
0 1
1 −1

]
we have

S−1MS =

[
−1 0
0 2

]
Not all matrices are diagonalizable, certainly those with distinct eigenval-

ues are, and some matrices with multiple eigenvalues.
Example 2. The matrix

(18) N =

[
0 1
0 0

]
has eigenvalues λ1 = λ2 = 0 but only one (up to a scalar multiple) eigen-
vector v1 = e1.
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Multiple eigenvalues are not guaranteed to have an equal number of in-
dependent eigenvectors!
N is not diagonalizable. Indeed, assume the contrary, to arrive at a

contradiction. Suppose there exists an invertible matrix S so that S−1NS =
Λ where Λ is diagonal, hence it has the eigenvalues of N on its diagonal,
and therefore it is the zero matrix: S−1NS = 0, which multiplied by S to
the left and S−1 to the right gives N = 0, which is a contradiction.

Some matrices with multiple eigenvalues may still be diagonalized; next
section explores when this is the case.

4.14. Eigenspaces. Consider an n × n matrix M with entries in F , with
eigenvalues λ1, . . . , λn in F .

Definition 9. The set

Vλj = {x ∈ Fn |Mx = λjx}
is called the eigenspace of M associated to the eigenvalue λj.

Exercise. Show that Vλj is the null space of the transformation M −λjI
and that Vλj is a subspace of Fn.

Note that all the nonzero vectors in Vλj are eigenvectors of M correspond-
ing to the eigenvalues λj .

Definition 10. A subspace V is called an invariant subspace for M if
M(V ) ⊂ V (which means that if x ∈ V then Mx ∈ V ).

The following Remark gathers important features of eigenspaces: it shows
that diagonalizable matrices are precisely those for which the dimension of
each eigenspace coincides with the multiplicity of the corresponding eigen-
value. (One implication is obvious, which one?)

Remark. 1. Each Vλj is an invariant subspace for M .
2. Vλj ∩ Vλl = {0} if λj 6= λl.
3. Denote by λ1, . . . , λk the distinct eigenvalues of M and by rj the

multiplicity of the eigenvalue λj , for each j = 1, . . . , k; it is clear that

det(M − λI) =

k∏
j=1

(λj − λ)rj and r1 + . . .+ rk = n

Then
dimVλj ≤ rj

4. M is diagonalizable in Fn if and only if dimVλj = rj for all j = 1, . . . , k
and then

Vλ1 ⊕ . . .⊕ Vλk = Fn

Proof. Showing of 1. and 2. is left to the reader.
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The idea in proving 3. is: since eigenspaces are invariant, we could ”di-
agonalize” M only one eigenspace, say Vλ1 , obtaining, in the characteris-

tic polynomial, a factor (λ − λ1)dimVλ1 . Let us transform is idea into a
proof. Suppose, for some eigenvalue, say λ1, of multiplicity r1, we have
dimVλ1 = d > r1 (to arrive to a contradiction). Let v1, . . .vd be a basis for
Vλ1 , which we complete to a basis of Fn: v1, . . .vd,w1, . . . ,wn−d. Consider
the matrix with these columns, S = [v1, . . .vd,w1, . . . ,wn−d] and attempt
the calculation at the beginning of §4.13:

(19)
MS = M [v1, . . .vd,w1, . . . ,wn−d] = [Mv1, . . .Mvd,Mw1, . . . ,Mwn−d]

[λ1v1, . . . λ1vd,Mw1, . . . ,Mwn−d] = [λ1Se1, . . . λ1Sed,Mw1, . . . ,Mwn−d]

= S[λ1e1, . . . λ1ed, S
−1Mw1, . . . , S

−1Mwn−d] := SM̃

Therefore S−1MS = M̃ , soM and M̃ have the same eigenvalues. Expanding
det(M̃ −λI) along the first row, then second etc. we see that the character-

istic polynomial of M̃ has a factor (λ− λ1)d, which is a contradiction, since
d > r1!

The statement 4. easily follows from the preceding ones. 2

Example. Consider the matrix

(20) M :=

 2 0 0

1 0 −1

1 −2 1


Its characteristic polynomials is

det(M − λI) = −λ3 + 3λ2 − 4 = − (λ+ 1) (λ− 2)2

so λ1 = −1 and λ2 = λ3 = 2 is a double eigenvalue. The eigenspace Vλ1 is
one dimensional, spanned by an eigenvector, which, after a simple calcula-
tion turns out to be v1 = (0, 1, 1)T . If the eigenspace Vλ2 is two-dimensional
(which is not guaranteed) then the matrix M is diagonalizable. A simple
calculation shows that there are two independent eigenvectors correspond-
ing to the eigenvalue λ2 = 2, for example v2 = (1, 0, 1)T and v3 = (2, 1, 0)T

(the null space of M − λ2I is two-dimensional). Let

S = [v1,v2,v3] =

 0 1 2

1 0 1

1 1 0


then

S−1MS =

 −1 0 0

0 2 0

0 0 2


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4.15. Real matrices with complex eigenvalues; decomplexification.

4.15.1. Complex eigenvalues of real matrices. For an n×n matrix with real
entries, if we want to have n guaranteed eigenvalues, then we have to accept
working in Cn. Otherwise, if we want to restrict ourselves to working only
with real vectors, then we have to accept that we may have fewer (real)
eigenvalues, or perhaps none.

Complex eigenvalues of real matrices come in pairs: if λ is an eigenvalue of
M , then so is its complex conjugate λ (since the characteristic equation has
real coefficients). Also, if v is an eigenvector corresponding to the eigenvalue
λ, then v is eigenvector corresponding to the eigenvalue λ (check!). The real
and imaginary parts of v span a plane where the linear transformation acts
by rotation, and a possible dilation. Simple examples are shown below.

Example 1: rotation in the xy-plane. Consider a rotation matrix

(21) Rθ =

[
cos θ − sin θ
sin θ cos θ

]
To find its eigenvalues calculate

det(Rθ−λI) =

∣∣∣∣ cos θ − λ − sin θ
sin θ cos θ − λ

∣∣∣∣ = (cos θ−λ)2+sin2 θ = λ2−2 cos θ+1

hence the solutions of the characteristic equations det(Rθ − λI) = 0 are
λ1,2 = cos θ ± i sin θ = e±iθ. It is easy to see that v1 = (i, 1)T is the

eigenvector corresponding to λ1 = eiθ and v2 = (−i, 1)T is the eigenvector
corresponding to λ2 = e−iθ.

Example 2: complex eigenvalues in R3. Consider the matrix

M =

 1− 1
2

√
3 −5

2

√
3 0

1
2

√
3 1 + 1

2

√
3 0

0 0 −4


Its characteristic polynomial is

det(M − λI) = −λ3 − 2λ2 + 4λ− 16 = − (λ+ 4)
(
λ2 − 2λ+ 4

)
and its eigenvalues are: λ1,2 = 1 ± i

√
3 = 2e±iπ/3 and λ3 = −4, and cor-

responding eigenvectors v1,2 = (−1 ± 2i, 1, 0)T , and v3 = e3. The matrix
S = [v1,v2,v3] diagonalized the matrix: S−1MS is the diagonal matrix,
having the eigenvalues on the diagonal, but all these are complex matrices.

To understand how the matrix acts on R3, we consider the real and
imaginary parts of v1: let x1 = <v1 = 1

2(v1 + v2) = (−1, 1, 0)T and

y1 = =v1 = 1
2i(v1 − v2) = (2, 0, 0)T . Since the eigenspaces are invari-

ant under M , then so is Sp(x1,y1), over the complex and even over the real
numbers (since M has real elements). The span over the real numbers is the
xy-plane, and it is invariant under M . The figure shows the image of the
unit circle in the xy-plane under the matrix M : it is an ellipse.
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Figure 1. The image of the unit circle in the xy-plane.

Along the direction of the third eigenvector (the z-axis) the matrix mul-
tiples any c e3 by −4.

In the basis x1,y1,v3 the matrix of the linear transformation has its
simplest form: using SR = [x1,y1,v3] we obtain the matrix of the transfor-
mation in this new basis as

S−1
R MSR =

 1
√

3 0

−
√

3 1 0

0 0 −4


and the upper 2× 2 block represents the rotation and dilation 2R−π/3.

4.15.2. Decomplexification. Suppose the n× n matrix M has real elements,
eigenvalues λ1, . . . , λn and n independent eigenvectors v1, . . . ,vn. Then M
is diagonalizable: if S = [v1, . . . ,vn] then S−1MS = Λ where Λ is a diagonal
matrix with λ1, . . . , λn on its diagonal.

Suppose that some eigenvalues are not real. Then the matrices S and Λ
are not real either, and the diagonalization of M must be done in Cn.

Suppose that we want to work in Rn only. Recall that the nonreal eigen-
values and eigenvectors of real matrices come in pairs of complex-conjugate
ones. In the complex diagonal form Λ one can replace diagonal 2× 2 blocks[

λj 0

0 λj

]
by a 2× 2 matrix which is not diagonal, but has real entries.

To see how this is done, suppose λ1 ∈ C \ R and λ2 = λ1, v2 = v1.
Splitting into real and imaginary parts, write λ1 = α1+iβ1 and v1 = x1+iy1.
Then from M(x1 + iy1) = (α1 + iβ1)(x1 + iy1) identifying the real and
imaginary parts, we obtain

Mx1 + iMy1 = (α1x− β1y) + i(β1x + α1y)
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In the matrix S = [v1,v2, . . . ,vn] composed of independent eigenvectors
of M , replace the first two columns v1,v2 = v1 by x1,y1 (which are vectors

in Rn): using the matrix S̃ = [x1,y1,v3, . . . ,vn] instead of S we have MS̃ =

S̃Λ̃ where

Λ̃ =


α1 β1 0 . . . 0
−β1 α1 0 . . . 0

0 0 λ3 . . . 0
...

...
...

...
0 0 0 . . . λm


We can similarly replace any pair of complex conjugate eigenvalues with

2× 2 real blocks.

Exercise. Show that each 2× 2 real block obtained through decomplex-
ification has the form [

α β
−β α

]
= ρRθ

for a suitable ρ > 0 and Rθ rotation matrix (21).

4.16. Jordan normal form. We noted in §4.14 that a matrix is similar to
a diagonal matrix if and only if the dimension of each eigenspace Vλj equals
the order of multiplicity of the eigenvalue λj . Otherwise, there are fewer
than n independent eigenvectors; such a matrix is called defective.

4.16.1. Jordan blocks. Defective matrices can not be diagonalized, but we
will see that they are similar to block diagonal matrices, called Jordan nor-
mal forms; these are upper triangular, have the eigenvalues on the diagonal,
1 in selected placed above the diagonal, and zero in the rest. After that, in
section §4.16.3 it is shown how to construct the transition matrix S, which
conjugates a defective matrix to its Jordan form; its columns are made of
generalized eigenvectors.

The Jordan blocks which appear on the diagonal of a Jordan normal form
are as follows.

1× 1 Jordan blocks are just [λ].
2× 2 Jordan blocks have the form

(22) J2(λ) =

[
λ 1
0 λ

]
For example, the matrix (18) is a Jordan block J2(0).
3× 3 Jordan blocks have the form

(23) J3(λ) =

 λ 1 0

0 λ 1

0 0 λ


In general, a k × k Jordan block, Jk(λ), is a matrix having the same

number, λ, on the diagonal, 1 above the diagonal and 0 everywhere else.



16 RODICA D. COSTIN

Note that Jordan blocks Jk(λ) have the eigenvalue λ with multiplicity k,
and the dimension of the eigenspace is one.

Example of a matrix in Jordan normal form:

3 | 0 0 0 0
− −
0 | 2 | 0 0 0

− − −
0 0 | 2 1 0

0 0 | 0 2 1

0 0 | 0 0 2


which is block-diagonal, having two 1×1 Jordan blocks and one 3×3 Jordan
block along its diagonal. The eigenvalue 3 is simple, while 2 has multiplicity
four. The eigenspace corresponding to 2 is two-dimensional (e2 and e3 are
eigenvectors).

Note how Jordan blocks act on the vectors of the basis. For (22): J2(λ)e1 =
λe1, so e1 is an eigenvector. Also

(24) J2(λ)e2 = e1 + λe2

which implies that (J2(λ)− λI)2e2 = (J2(λ)− λI)e1 = 0.
Similarly, for (30): J3(λ)e1 = λe1 so e1 is an eigenvector. Then

(25) J3(λ)e2 = e1 + λe2

implying that (J3(λ)− λI)2e2 = (J3(λ)− λI)e1 = 0. Finally,

(26) J3(λ)e3 = e2 + λe3

implying that (J3(λ) − λI)3e3 = (J3(λ) − λI)2e2 = 0. This illuminates
the idea behind the notion of generalized eigenvectors defined in the next
section.

4.16.2. The generalized eigenspace. Defective matrices are similar to a ma-
trix which is block-diagonal, having Jordan blocks on its diagonal. An ap-
propriate basis is formed using generalized eigenvectors:

Definition 11. A generalized eigenvector of M corresponding to the
eigenvalue λ is a vector x 6= 0 so that

(27) (M − λI)kx = 0

for some positive integer k.

Examples.
1) Eigenvectors are generalized eigenvectors (take k = 1 in (27)).
2) Vectors in the standard basis are generalized eigenvectors for Jordan

blocks.
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Definition 12. The generalized eigenspace of M corresponding to the
eigenvalue λ is the subspace

Eλ = {x | (M − λI)kx = 0 for some k ∈ Z+}

Sometimes we want to refer to only at the distinct eigenvalues of a matrix,
this set is called ”the spectrum”:

Definition 13. The spectrum σ(M) of a matrix M is the set of its eigen-
values.

Theorem 14. For any n× n matrix M the following hold:
(i) Vλ ⊂ Eλ;
(ii) Eλ is a subspace;
(iii) Eλ is an invariant subspace under M ;
(iv) Eλ1 ∩ Eλ2 = 0 for λ1 6= λ2.
(v) dimEλ=the multiplicity of λ.
(vi)The set of eigenvectors and generalized eigenvectors of M span the

whole space Cn:
⊕λ∈σ(M) Eλ = Cn

The proofs of (i)-(iv) are simple exercises.
The proofs of (v), (vi) are not included here.

4.16.3. How to find a basis for each Eλ that can be used to conjugate a
matrix to a Jordan normal form.

Example 1. The matrix

(28) M =

[
1 + a −1

1 a− 1

]
is defective: it has eigenvalues a, a and only one independent eigenvector,
(1, 1)T . It is therefore similar to J2(a). To find a basis x1,x2 in which the
matrix takes this form, let x1 = (1, 1)T (the eigenvector); to find x2 we
solve (M − aI)x2 = x1 (as seen in (24) and in (25)). The solutions are
x2 ∈ (1, 0)T +N (M − aI), and any vector in this space works, for example
x2 = (1, 0)T . For

(29) S = [x1,x2] =

[
1 1

1 0

]
we have S−1MS = J2(a).

Example 2.
The matrix

M =

 1 −2 3

1 2 −1

0 −1 3


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has eigenvalues 2, 2, 2 and only one independent eigenvector v1 = (1, 1, 1)T .
Let x1 = v1 = (1, 1, 1)T . Solving (M − 2I)x2 = x1 we obtain x2 =

(1,−1, 0)T (plus any vector in N (M −2I) = Vλ1). Next solve (M −2I)x3 =
x2 which gives x3 = (0, 1, 1)T (plus any vector in the null space of M − 2I).
For S = [x1,x2,x3] we have

(30) S−1MS =

 2 1 0

0 2 1

0 0 2


In general, if λ is an eigenvalue of M for which dimVλ is less than the

multiplicity of λ, we do the following. Choose a basis for Vλ. For each
eigenvector v in this basis set x1 = v and solve recursively

(31) (M − λI)xk+1 = xk, k = 1, 2, . . .

Note that each x1 satisfies (27) for k = 1, x2 satisfies (27) for k = 2, etc.
At some step k1 the system (M − λI)xk1+1 = xk1 will have no solution;

we found the generalized eigenvectors x1, . . . ,xk1 (which will give a k1 × k1

Jordan block). We then repeat the procedure for a different eigenvector in
the chosen basis for Vλ, and obtain a new set of generalized eigenvectors,
corresponding to a new Jordan block.

Note: Jordan form is not unique.

4.16.4. Real Jordan normal form. If a real matrix has multiple complex
eigenvalues and is defective, then its Jordan form can be replaced with an
upper block diagonal matrix in a way similar to the diagonal case illus-
trated in §4.15.2, by replacing the generalized eigenvectors with their real
and imaginary parts.

For example, a real matrix which can be brought to the complex Jordan
normal form 

α+ iβ 1 0 0
0 α+ iβ 0 0
0 0 α− iβ 1
0 0 0 α− iβ


can be conjugated (by a real matrix) to the real matrix

α β 1 0
−β α 0 1
0 0 α β
0 0 −β α



4.17. Block matrices.
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4.17.1. Multiplication of block matrices. It is sometimes convenient to work
with matrices split in blocks. We have already used this when we wrote

M [v1, . . . ,vn] = [Mv1, . . . ,Mvn]

More generally, if we have two matrices M, P with dimensions that allow
for multiplication (i.e. the number of columns of M equals the number of
rows of P ) and they are split into blocks:

M =

 M11 | M12

−−− − −−−
M21 | M22

 , P =

 P11 | P12

−−− − −−−
P21 | P22


then

MP =

 M11P11 +M12P21 | M11P12 +M12P22

−−−−−− − −−−−−−
M21P11 +M22P21 | M21P12 +M22P22


if the number of columns of M11 equals the number of rows of P11.

Exercise. Prove that the block multiplication formula is correct.

More generally, one may split the matrices M and P into many blocks, so
that the number of block-columns of M equal the number of block-rows of
P and so that all products MjkPkl make sense. Then MP can be calculated
using blocks by a formula similar to that using matrix elements.

In particular, if M,P are block diagonal matrices, having the blocks Mjj ,
Pjj on the diagonal, then MP is a block diagonal matrix, having the blocks
MjjPjj along the diagonal.

For example, if M is a matrix in Jordan normal form, then it is block
diagonal, with Jordan blocks Mjj along the diagonal. Then the matrix

M2 is block diagonal, having M2
jj along the diagonal, and all powers Mk

are block diagonal, having Mk
jj along the diagonal. Furthermore, any linear

combination of these powers of M , say c1M+c2M
2 is block diagonal, having

the corresponding c1Mjj + c2M
2
jj along the diagonal.

4.17.2. Determinant of block matrices.

Proposition 15. Let M be a square matrix, having a triangular block form:

M =

[
A B
0 D

]
or M =

[
A 0
C D

]
where A and D are square matrices, say A is k × k and D is l × l.

Then detM = detA detD.
Moreover, if a1, . . . , ak are the eigenvalues of A, and d1, . . . , dl are the

eigenvalues of D, then the eigenvalues of M are a1, . . . , ak, d1, . . . , dl.

The proof is left to the reader as an exercise.2

2Hint: bring A, D to Jordan normal form, then M to an upper triangular form.
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For a more general 2× 2 block matrix, with D invertible3

M =

[
A B
C D

]
the identity [

A B
C D

] [
I 0

−D−1C I

]
=

[
A−BD−1C B

0 D

]
together with Proposition 15 implies that

det

[
A B
C D

]
= det(A−BD−1C) detD = det(AD −BD−1CD)

For larger number of blocks, there are more complicated formulas.

3References: J.R. Silvester, Determinants of block matrices, Math. Gaz., 84(501)
(2000), pp. 460-467, and P.D. Powell, Calculating Determinants of Block Matrices,
http://arxiv.org/pdf/1112.4379v1.pdf
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5. Solving linear equations

5.1. Solutions of linear differential equations with constant coeffi-
cients. In §4.3 we saw an example which motivated the notions of eigen-
values and eigenvectors. General linear first order systems of differential
equations with constant coefficients can be solved in a quite similar way.
Consider

(32)
du

dt
= Mu

where M is an m×m constant matrix and u in an m-dimensional vector.
As in §4.3, it is easy to check that u(t) = eλtv is a solution of (32) if λ

is an eigenvalue of M , and v is a corresponding eigenvector. The goal is
to find the solution to any initial value problem: find the solution of (32)
satisfying

(33) u(0) = u0

for any given vector u0.

5.2. The case when M is diagonalizable. Assume that M has m inde-
pendent eigenvectors v1, . . . ,vm, corresponding to the eigenvalues λ1, . . . , λm.
Then (32) has the solutions uj(t) = eλjtvj for each j = 1, . . . ,m.

These solutions are linearly independent. Indeed, assume that for some
constants c1, . . . , cm we have c1u1(t) + . . . + cmum(t) = 0 for all t. Then,
in particular, for t = 0 it follows that c1v1 + . . .+ cmvm = 0 which implies
that all cj are zero (since v1, . . . ,vm were assumed independent).

5.2.1. Fundamental matrix solution. Since equation (32) is linear, then any
linear combination of solutions is again a solution:

(34) u(t) = a1u1(t) + . . .+ amum(t)

= a1e
λ1tv1 + . . .+ ame

λmtvm, aj arbitrary constants

The matrix

(35) U(t) = [u1(t), . . . ,um(t)]

is called a fundamental matrix solution. Formula (34) can be written
more compactly as

(36) u(t) = U(t)a, where a = (a1, . . . , am)T

The initial condition (33) determines the constants a, since (33) implies
U(0)a = u0. Noting that U(0) = [v1, . . . ,vm] = S therefore a = S−1u0 and
the initial value problem (32), (33) has the solution

u(t) = U(t)S−1u0

General results in the theory of differential equations (on existence and
uniqueness of solutions to initial value problems) show that this is only
one solution.

In conclusion:
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Proposition 16. If the m×m constant matrix M has has m independent
eigenvectors v1, . . . ,vm, corresponding to the eigenvalues λ1, . . . , λm, then
equation (32) has m linearly independent solutions uj(t) = eλjtvj, j =
1, . . . ,m and any solution of (32) is a linear combination of them.

Example. Solve the initial value problem

(37)
dx
dt = x− 2y, x(0) = α
dy
dt = −2x+ y, y(0) = β

Denoting u = (x, y)T , problem (37) is

(38)
du

dt
= Mu, where M =

[
1 −2

−2 1

]
, with u(0) =

[
α
β

]
Calculating the eigenvalues of M , we obtain λ1 = −1, λ2 = 3, and corre-
sponding eigenvectors v1 = (1, 1)T , v2 = (−1, 1)T . There are two indepen-
dent solutions of the differential system:

u1(t) = e−t
[

1
1

]
, u2(t) = e3t

[
−1
1

]
and a fundamental matrix solution is

(39) U(t) = [u1(t),u2(t)] =

[
e−t −e3t

e−t e3t

]
The general solution is a linear combination of the two independent solutions

u(t) = a1e
−t
[

1
1

]
+ a2e

3t

[
−1
1

]
= U(t)

[
a1

a2

]
This solution satisfies the initial condition if

a1

[
1
1

]
+ a2

[
−1
1

]
=

[
α
β

]
which is solved for a1, a2: from[

1 −1

1 1

] [
a1

a2

]
=

[
α
β

]
it follows that[

a1

a2

]
=

[
1 −1

1 1

]−1 [
α
β

]
=

[
1
2

1
2

−1
2

1
2

] [
α
β

]
=

[ α+β
2

−α+β
2

]
therefore

(40) u(t) = α+β
2 e−t

[
1
1

]
+ −α+β

2 e3t

[
−1
1

]
so

x(t) = α+β
2 e−t − −α+β

2 e3t

y(t) = α+β
2 e−t + −α+β

2 e3t
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5.2.2. The matrix eMt. It is often preferable to work with a matrix of in-
dependent solutions U(t) rather than with a set of independent solutions.
Note that the m×m matrix U(t) satisfies

(41)
d

dt
U(t) = M U(t)

In dimension one this equation reads du
dt = λu having its general solution

u(t) = Ceλt. Let us check this fact based on the fact that the exponential
is the sum of its Taylor series:

ex = 1 +
1

1!
x+

1

2!
x2 + . . .+

1

n!
xn + . . . =

∞∑
n=0

1

n!
xn

where the series converges for all x ∈ C. Then

eλt = 1 +
1

1!
λt+

1

2!
λ2t2 + . . .+

1

n!
λnxn + . . . =

∞∑
n=0

1

n!
λntn

and the series can be differentiated term-by-term, giving

d

dt
eλt =

d

dt

∞∑
n=0

1

n!
λntn =

∞∑
n=0

1

n!
λn

d

dt
tn =

∞∑
n=1

1

(n− 1)!
λntn−1 = λeλt

Perhaps one can define, similarly, the exponential of a matrix and obtain
solutions to (41)?

For any square matrix M , one can define polynomials, as in (9), and it is
natural to define

(42) etM = 1 +
1

1!
tM +

1

2!
t2M2 + . . .+

1

n!
tnMn + . . . =

∞∑
n=0

1

n!
tnMn

provided that the series converges. If, furthermore, the series can differenti-
ated term by term, then this matrix is a solution of (41) since
(43)

d

dt
etM =

d

dt

∞∑
n=0

1

n!
tnMn =

∞∑
n=0

1

n!

d

dt
tnMn =

∞∑
n=1

n

n!
tn−1Mn = MetM

Convergence and term-by-term differentiation can be justified by diago-
nalizing M .

Let v1, . . . ,vm be independent eigenvectors corresponding to the eigen-
values λ1, . . . , λm of M , let S = [v1, . . . ,vm]. Then M = SΛS−1 with Λ the
diagonal matrix with entries λ1, . . . , λm.

Note that

M2 =
(
SΛS−1

)2
= SΛS−1SΛS−1 = SΛ2S−1

then
M3 = M2M =

(
SΛ2S−1

) (
SΛS−1

)
= SΛ3S−1

and so on; for any power
Mn = SΛnS−1
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Then the series (42) is

(44) etM =

∞∑
n=0

1

n!
tnMn =

∞∑
n=0

1

n!
tnSΛnS−1 = S

( ∞∑
n=0

1

n!
tnΛn

)
S−1

For

(45) Λ =


λ1 0 . . . 0
0 λ2 . . . 0
...

...
...

0 0 . . . λm


it is easy to see that

(46) Λn =


λn1 0 . . . 0
0 λn2 . . . 0
...

...
...

0 0 . . . λnm

 for n = 1, 2, 3 . . .

therefore

(47)
∞∑
n=1

1

n!
tnΛn =


∑∞

n=1
1
n! t

nλn1 0 . . . 0
0

∑∞
n=1

1
n! t

nλn2 . . . 0
...

...
...

0 0 . . .
∑∞

n=1
1
n! t

nλnm



(48) =


etλ1 0 . . . 0

0 etλ2 . . . 0
...

...
...

0 0 . . . etλm

 = etΛ

and (44) becomes

(49) etM = SetΛS−1

which shows that the series defining the matrix etM converges and can be
differentiated term-by-term (since these are true for each of the series in
(47)). Therefore etM is a solution of the differential equation (41).

Multiplying by an arbitrary constant vector b we obtain vector solutions
of (32) as

(50) u(t) = etMb, with b an arbitrary constant vector

Noting that u(0) = b it follows that the solution of the initial value problem
(32), (33) is

u(t) = etMu0

Note: the fundamental matrix U(t) in (35) is linked to the fundamental
matrix etM by

(51) U(t) = SetΛ = etMS
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Example. For the example (38) we have

S =

[
1 −1

1 1

]
, Λ =

[
−1 0

0 3

]
, etΛ =

[
e−t 0

0 e3t

]
and

u1(t) = e−t
[

1
1

]
, u2(t) = e3t

[
−1
1

]
The fundamental matrix U(t) is given by (39).

Using (49)

etM = SetΛS−1 =

[
1
2 e−t + 1

2 e3 t 1
2 e−t − 1

2 e3 t

1
2 e−t − 1

2 e3 t 1
2 e−t + 1

2 e3 t

]
and the solution to the initial value problem is

etM
[
α
β

]
=

[ (
1
2 e−t + 1

2 e3 t
)
α+

(
1
2 e−t − 1

2 e3 t
)
β(

1
2 e−t − 1

2 e3 t
)
α+

(
1
2 e−t + 1

2 e3 t
)
β

]
which, of course, is the same as (40).

5.3. Non-diagonalizable matrix. The exponential etM is defined simi-
larly, only a Jordan normal form must be used instead of a diagonal form:
writing S−1MS = J where S is a matrix formed of generalized eigenvectors
of M , and J is a Jordan normal form, then

(52) etM = SetJS−1

It only remains to check that the series defining the exponential of a Jordan
form converges, and that it can be differentiated term by term.

Also to be determined are m linearly independent solutions, since if M is
not diagonalizable, then there are fewer than m independent eigenvectors,
hence fewer than m independent solutions of pure exponential type. This
can be done using the analogue of (51), namely by considering the matrix

(53) U(t) = SetJ = etMS

The columns of the matrix (53) are linearly independent solutions, and we
will see that among them are the purely exponential ones multipling the
eigenvectors of M .

Since J is block diagonal (with Jordan blocks along its diagonal), then its
exponential will be block diagonal as well, with exponentials of each Jordan
block (see §4.17.1 for multiplication of block matrices).

5.3.1. Example: 2× 2 blocks: for

(54) J =

[
λ 1

0 λ

]
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direct calculations give

(55) J2 =

[
λ2 2λ

0 λ2

]
, J3 =

[
λ3 3λ2

0 λ3

]
, . . . , Jk =

[
λk k λk−1

0 λk

]
, . . .

and then

(56) etJ =
∞∑
k=0

1

k!
tkJk =

[
etλ tetλ

0 etλ

]
For the equation (32) with the matrix M is similar to a 2 × 2 Jordan

block: S−1MS = J with J as in (54), and S = [x1,x2] a fundamental
matrix solution is U(t) = SetJ = [etλx1, e

tλ(tx1 + x2)] whose columns are
two linearly independent solutions

(57) u1(t) = etλx1, u2(t) = etλ(tx1 + x2)

and any linear combination is a solution:

(58) u(t) = a1e
tλx1 + a2e

tλ(tx1 + x2)

Example. Solve the initial value problem

(59)
dx
dt = (1 + a)x− y, x(0) = α
dy
dt = x+ (a− 1)y, y(0) = β

Denoting u = (x, y)T , the differential system (59) is du
dt = Mu with M given

by (28), matrix for which we found that it has a double eigenvalue a and
only one independent eigenvector x1 = (1, 1)T .

Solution 1. For this matrix we already found an independent generalized
eigenvector x2 = (1, 0)T , so we can use formula (58) to write down the
general solution of (59).

Solution 2. We know one independent solution to the differential system,
namely u1(t) = eatx1. We look for a second independent solution as the
same exponential multiplying a polynomial in t, of degree 1: substituting
u(t) = eat(tb + c) in du

dt = Mu we obtain that a(tb + c) + b = M(tb + c)
holds for all t, therefore Mb = ab and (M − aI)c = b which means that b
is an eigenvector of M (or b = 0), and c is a generalized eigenvector. We
have re-obtained the formula (57).

By either method it is found that a fundamental matrix solution is

U(t) = [u1(t),u2(t)] = eat
[

1 t+ 1
1 t

]
and the general solution has the form u(t) = U(t)c for an arbitrary constant
vector c. We now determine c so that u(0) = (α, β)T , so we solve[

1 1
1 0

]
c =

[
α
β

]
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which gives

c =

[
1 1
1 0

]−1 [
α
β

]
=

[
0 1

1 −1

] [
α
β

]
=

[
β

α− β

]
and the solution to the initial value problem is

u(t) = eat
[

1 t+ 1
1 t

][
β

α− β

]
= eat

[
t (α− β) + α

β + t (α− β)

]
or

x(t) = eat (t (α− β) + α) , y(t) = eat (t (α− β) + β)

5.3.2. Example: 3× 3 blocks: for

(60) J =

 λ 1 0

0 λ 1

0 0 λ


direct calculations give

J2 =

 λ2 2λ 1

0 λ2 2λ

0 0 λ2

 , J3 =

 λ3 3λ2 3λ

0 λ3 3λ2

0 0 λ3

 , J4 =

 λ4 4λ3 6λ2

0 λ4 4λ3

0 0 λ4


Higher powers can be calculated by induction; it is clear that

(61) Jk =

 λk kλk−1 k(k−1)
2 λk−2

0 λk kλk−1

0 0 λk


Then

(62) etJ =

∞∑
k=0

1

k!
tkJk =

 etλ tetλ 1
2 t

2etλ

0 etλ tetλ

0 0 etλ


For M = SJS−1 with J as in (60) and S = [x1,x2,x3], a fundamental

matrix solution for (32) is

SetJ = [x1e
λt, (tx1 + x2)eλt, (

1

2
t2x1 + tx2 + x3)eλt]
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5.3.3. In general, if an eigenvalue λ has multiplicity r, but there are only
k < r independent eigenvectors v1, . . . ,vk then, besides the k independent
solutions eλtv1, . . . , e

λtvk there are other r− k independent solutions in the
form eλtp(t) with p(t) polynomials in t of degree at most r− k, with vector
coefficients (which turn out to be generalized eigenvectors of M).

Then the solution of the initial value problem (32), (33) is

u(t) = etMu0

Combined with the results of uniqueness of the solution of the initial value
problem (known from the general theory of ordinary differential equations)
it follows that:

Theorem 17. Any linear differential equation u′ = Mu where M is an m×
m constant matrix, and u is an m-dimensional vector valued function has
m linearly independent solutions, and any solution is a linear combination
of these. In other words, the solutions of the equation form a linear space
of dimension m.

5.4. Fundamental facts on linear differential systems.

Theorem 18. Let M be an n× n matrix (diagonalizable or not).
(i) The matrix differential problem

(63)
d

dt
U(t) = M U(t), U(0) = U0

has a unique solution, namely U(t) = eMtU0.
(ii) Let W (t) = detU(t). Then

(64) W ′(t) = TrM W (t)

therefore

(65) W (t) = W (0) etTrM

(iii) If U0 is an invertible matrix, then the matrix U(t) is invertible for
all t, called a fundamental matrix solution; the columns of U(t) form
an independent set of solutions of the system

(66)
du

dt
= Mu

(iv) Let u1(t), . . . ,un(t) be solutions of the system (66). If the vectors
u1(t), . . . ,un(t) are linearly independent at some t then they are linearly
independent at any t.

Proof.
(i) Clearly U(t) = eMtU0 is a solution, and it is unique by the general

theory of differential equations: (63) is a linear system of n2 differential
equation in n2 unknowns.

(ii) Using (52) it follows that

W (t) = detU(t) = det(SetJS−1U0) = det etJ detU0 = et
∑n
j=1 λj detU0
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= etTrM detU0 = etTrMW (0)

which is (65), implying (64).
(iii), (iv) are immediate consequences of (65). 2

5.5. Eigenvalues and eigenvectors of the exponential of a matrix.
It is not hard to show that

(eM )−1 = e−M , (eM )k = ekM , eM+cI = eceM

More generally, it can be shown that if MN = NM , then eMeN = eM+N .
Warning: if the matrices do not commute, this may not be true!

Recall that if M is diagonalizable, in other words if M = SΛS−1 where
Λ = diag(λ1, . . . , λn) is a diagonal matrix, then eM = SeΛS−1 where eΛ =
diag(eλ1 , . . . , e

λ
n). If follows that the eigenvalues of eM are eλ1 , . . . , e

λ
n and the

columns of S are eigenvectors of M , and also of eM .
If M is not diagonalizable, let J be its Jordan normal form. Recall that

if M = SJS−1 then eM = SeJS−1 where eJ is an upper triangular matrix,
with diagonal elements still being exponentials of the eigenvalues of M . The
matrix eJ is not a Jordan normal form; however, generalized eigenvectors of
M are also of eM .

Exercise.
1. Show that if Mx = 0 then eMx = x.
2. Show that if v is an eigenvector of M corresponding to the eigenvalues

λ, then v is also an eigenvector of eM corresponding to the eigenvalues eλ.
3. Show that if Mv = λv then eMv = eλ[v + (M − λI)v].

Note that if (M − λI)2x = 0 then (eM − eλ)2x = 0. Indeed, (eM −
eλ)2x = (e2M − 2eλeM + e2λI)2x = e2λe2(M−λ)x − 2e2λeM−λx + e2λx =
e2λ[x + 2(M − λ)x]− 2e2λ[x + (M − λ)x] + e2λx = 0.

In general, if x is a generalized eigenvector of M corresponding to the
eigenvalues λ, then x is also a generalized eigenvector of eM corresponding
to the eigenvalues eλ.
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5.6. Higher order linear differential equations; companion matrix.
Consider scalar linear differential equations, with constant coefficients, of
order n:

(67) y(n) + an−1y
(n−1) + . . .+ a1y

′ + a0y = 0

where y(t) is a scalar function and a1, . . . , an−1 are constants.
Such equations can be transformed into systems of first order equations:

the substitution

(68) u1 = y, u2 = y′, . . . , un = y(n−1)

transforms (67) into the system

(69) u′ = Mu, where M =


0 1 0 . . . 0
0 0 1 . . . 0
...

...
0 0 0 . . . 1
−a0 −a1 −a2 . . . −an−1


The matrix M is called the companion matrix to the differential equation
(67).

To find its eigenvalues an easy method is to search for λ so that the linear
system Mx = λx has a solution x 6= 0:

x2 = λx1, x3 = λx2, . . . , xn = λxn−1, −a0x1 − a1x2 − . . .− an−1xn = λxn

which implies that

(70) λn + an−1λ
n−1 + . . .+ a1λ+ a0 = 0

which is the characteristic equation of M .
Note that the characteristic equation (70) can also be obtained by search-

ing for solutions of (67) which are purely exponential: y(t) = eλt.

5.6.1. Linearly independent sets of functions. We are familiar with the no-
tion of linear dependence or independence of functions belonging to a given
linear space. In practice, functions arise from particular problems, or classes
of problems, for example as solutions of equations and only a posteriori we
find a linear space to accommodates them. A natural definition of linear
dependence or independence which can be used in most usual linear space
of functions is:

Definition 19. A set of function f1, . . . , fn are called linearly dependent
on an interval I if there are constants c1, . . . , cn, not all zero, so that

(71) c1f1(t) + . . .+ cnfn(t) = 0 for all t ∈ I

A set of functions which are not linearly dependent on I are called linearly
independent on I. This means that if, for some constants c1, . . . , cn relation
(71) holds, then necessarily all c1, . . . , cn are zero.

If all functions f1, . . . , fn are enough many times differentiable then there
is a simple way to check linear dependence or independence:
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Theorem 20. Assume functions f1, . . . , fn are n− 1 times differentiable on
the interval I. Consider their Wronskian

W [f1, . . . , fn](t) =

∣∣∣∣∣∣∣∣∣
f1(t) . . . fn(t)
f ′1(t) . . . f ′n(t)

...
...

f
(n−1)
1 (t) . . . f

(n−1)
n (t)

∣∣∣∣∣∣∣∣∣
(i) If the functions f1, . . . , fn are linearly dependent then

W [f1, . . . , fn](t) = 0 for all t ∈ I
(ii) If there is some point t0 ∈ I so that W [f1, . . . , fn](t0) 6= 0 then the

functions are linearly independent on I.

Indeed, to show (i), assume that (71) holds for some constants c1, . . . , cn,
not all zero; then by differentiation, we see that the columns of W (t) are
linearly dependent for each t, hence W (t) = 0 for all t.

Part (ii) is just the negation of (i). 2

Example 1. To check if the functions 1, t2, et are linearly dependent we
calculate their Wronskian

W [1, t2, et] =

∣∣∣∣∣∣
1 t2 et

0 2t et

0 2 et

∣∣∣∣∣∣ = 2 et (t− 1) is not identically 0

so they are linearly independent (even if the Wronskian happens to be zero
for t = 1).

Example 2. If the numbers λ1, . . . , λn are all distinct then the functions
etλ1 , . . . , etλn are linearly independent.

Indeed, their Wronskian equals the product etλ1 . . . etλn multiplied by a
Vandermonde determinant which equals

∏
i<j(λj − λi) which is never zero

if λ1, . . . , λn are all distinct, or identically zero if two of λs are equal.

I what follows we will see that if the functions f1, . . . , fn happen to be
solutions of the same linear differential equation, then their Wronskian is
either identically zero, or never zero.

5.6.2. Linearly independent solutions of nth order linear differential equa-
tions. Using the results obtained for first order linear systems, and looking
just at the first component u1(t) of the vector u(t) (since y(t) = u1(t)) we
find:

(i) if the characteristic equation (70) has n distinct solutions λ1, . . . , λn
then the general solution is a linear combination of purely exponential solu-
tions

y(t) = a1e
λ1t + . . .+ ane

λnt

(ii) if λj is a repeated eigenvalue of multiplicity rj then there are rj
independent solutions of the type eλjtq(t) where q(t) are polynomials in t of
degree at most rj , therefore they can be taken to be eλjt, teλjt, . . . , trj−1eλjt.
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Example. Solve the differential equation

y′′′ − 3y′′ + 4y = 0

The characteristic equation, obtained by substituting y(t) = eλt, is λ3−3λ2+
4 = 0 which factored is (λ− 2)2(λ+ 1) = 0 giving the simple eigenvalue −1
and the double eigenvalue 2. There are tree independent solutions y1(t) =
e−t, y2(t) = e2t, y3(t) = te2t and any solution is a linear combination of
these.

5.6.3. The Wronskian. Let y1(t), . . . , yn(t) be n solutions of the equation
(67). The substitution (68) produces n solutions u1, . . .un of the system
(69). Let U(t) = [u1(t), . . .un(t)] be the matrix solution of (69). Theorem 18
applied to the companion system yields:

Theorem 21. Let y1(t), . . . , yn(t) be solutions of equation (67).
(i) Their Wronskian W (t) = W [y1, . . . , yn](t) satisfies

W (t) = e−tan−1W (0)

(ii) y1(t), . . . , yn(t) are linearly independent if and only if their Wronskian
is not zero.

5.6.4. Decomplexification. Suppose equation (67) has real coefficients, aj ∈
R, but there are nonreal eigenvalues, say λ1,2 = α1±iβ1. Then there are two

independent solutions y1,2(t) = et(α1±iβ1) = etα1 [cos(tβ1)± i sin(tβ1)]. If real
valued solutions are needed (or desired), note that Sp(y1, y2) = Sp(yc, ys)
where

yc(t) = etα1 cos(tβ1), ys(t) = etα1 sin(tβ1)

and ys, yc are two independent solutions (real valued).
Furthermore, any solution in Sp(yc, ys) can be written as

(72) C1e
tα1 cos(tβ1) + C2e

tα1 sin(tβ1) = Aetα1 sin(tβ1 +B)

where

A =
√
C2

1 + C2
2

and B is the unique angle in [0, 2π) so that

cosB =
C2√

C2
1 + C2

2

, sinB =
C1√

C2
1 + C2

2

Example 1. Solve the equation of the harmonic oscillator

(73) x′ = −y, y′ = k2x where k ∈ R

giving both complex and real forms.
In this example it is quicker to solve by turning the system into a second

order scalar equation: taking the derivative in the first equation we obtain
x′′ = −y′ and using the second equation it follows that x′′ + k2x = 0, with
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characteristic equation λ2 +k2 = 0 and eigenvalues λ1,2 = ±ik. The general

solution is x(t) = c1e
ikt+ c2e

−ikt. Then y(t) = −x′(t) = ikc1e
ikt− ikc2e

−ikt.
In real form

(74) x(t) = A sin(kt+B), y(t) = −Ak cos(kt+B)

Example 2. Solve the differential equation y(iv) + y = 0. Find four real
valued independent solutions.

The characteristic equation is λ4+1 = 0 with solutions λk = eiπ(2k+1)/4, k =
0, 1, 2, 3. The equation has four independent solutions yk(t) = exp(iπ(2k +
1)/4 t), k = 0, 1, 2, 3.

To identify the real and imaginary parts of the eigenvalues, note that

λ0 = exp( iπ4 ) =
√

2
2 + i

√
3

2 , λ3 = λ0, λ2 = −λ0, λ1 = −λ3. (Alternatively,

one can factor λ4 + 1 = (λ2 +
√

2λ+ 1)(λ2−
√

2λ+ 1) then solve.) We have

the four independent solutions exp(±t
√

2
2 ) cos(t

√
3

2 ), exp(±t
√

2
2 ) sin(t

√
3

2 ).

5.7. Systems of second order equations. Systems of higher order lin-
ear equations, with constant coefficients can de solved using similar ideas.
Consider for example

(75)
d2u

dt2
= Mu

Such systems can be reduced to a first order system by introducing new vari-
ables: denoting v = du

dt the n-dimensional system of second order equations
(75) becomes the 2n-dimensional system of first order equations

(76)
d

dt

[
u
v

]
=M

[
u
v

]
where M =

[
0 I
M 0

]
To find the eigenvalues µ of M we solve det(M − µI) = 0, and using
Proposition 15 we find

det(M− µI) =

∣∣∣∣ −µI I
M −µI

∣∣∣∣ = det((−µI)2 − (−µI)−1M(−µI))

= det(µ2I −M)

therefore µ2 is an eigenvalue of M . It follows that if λ1, . . . , λn are the
eigenvalues of M , then the eigenvalues of M are ±

√
λ1, . . . ,±

√
λn. It can

be checked that if Muj = λjuj then[
0 I
M 0

] [
uj

±
√
λjuj

]
= ±

√
λj

[
uj

±
√
λjuj

]
giving the eigenvectors ofM. With this information solutions can be readily
found.
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5.8. Stability in differential equations.

5.8.1. Stable versus unstable equilibrium points. A linear, first order system
of differential equation

(77)
du

dt
= Mu

always has the zero solution: u(t) = 0 for all t. The point 0 is called an
equilibrium point of the system (77). More generally,

Definition 22. An equilibrium point of a differential equation u′ = f(u)
is a point u0 for which the constant function u(t) = u0 is a solution, there-
fore f(u0) = 0.

It is important in applications to know how solutions behave near an
equilibrium point.

An equilibrium point u0 is called stable if any solutions which start close
enough to u0 remain close to u0 for all t > 0. (This definition can be made
more mathematically precise, but it will not be needed here, and it is besides
the scope of these lectures.)

Definition 23. An equilibrium point u0 is called asymptotically stable
if

lim
t→∞

u(t) = u0 for any solution u(t)

It is clear that an asymptotically stable point is stable, but the converse is
not necessarily true. For example, the harmonic oscillator (73) has solutions
confined to ellipses, since from (74) it follows that x2+y2/k2 = A2. Solutions
are close to the origin if A is small, and they go around the origin along an
ellipse, never going too far, and not going towards the origin: the origin is
a stable, but not asymptotically stable equilibrium point.

An equilibrium point which is not stable is called unstable.

Suppose one is interested in the stability of an equilibrium point of an
equation u′ = f(u). By a change of variables the equilibrium point can be
moved to u0 = 0, hence we assume f(0) = 0. It is natural to approximate
the equation by its linear part: f(u) ≈Mx, where the matrix M has the ele-
ments Mij = ∂fi/∂xj(0), and expect that the stability (or instability) of the
equilibrium point of u′ = f(u) to be the same as for its linear approximation
u′ = Mu.

This is true for asymptotically stable points, and for unstable points,
under fairly general assumptions on f . But it is not necessarily true for
stable, not asymptotically stable, points as in this case the neglected terms
of the approximation may change the nature of the trajectories.

Understanding the stability for linear systems helps understand the sta-
bility for many nonlinear equations.
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5.8.2. Characterization of stability for linear systems. The nature of the
equilibrium point u0 = 0 of linear differential equations depends on the
eigenvalues of the matrix M as follows.

We saw that solutions of a linear system (77) are linear combinations of
exponentials etλj where λj are the eigenvalues of the matrix M , and if M is

not diagonalizable, also of tketλj for 0 < k ≤(multiplicity of λj)− 1.
Recall that

lim
t→∞

tketλj = 0 if and only if <λj < 0

Therefore:
(i) if all λj have negative real parts, then any solution u(t) of (77) converge

to zero: limt→∞ u(t) = 0, and 0 is asymptotically stable.
(ii) If all <λj ≤ 0, and some real parts are zero, and eigenvalues with zero

real part have the dimension of the eigenspace equal to the multiplicity of
the eigenvalue4 then 0 is stable.

(iii) If any eigenvalue has a positive real part, then 0 is unstable.
As examples, let us consider 2 by 2 systems with real coefficients.
Example 1: an asymptotically stable case, with all eigenvalues real.
For

M =

[
−5 −2

−1 −4

]
, M = SΛS−1, with Λ =

[
−3 0

0 −6

]
, S =

[
1 2

−1 1

]
The figure shows the field plot (a representation of the linear transfor-

mation x → Mx of R2). The trajectories are tangent to the line field, and
they are going towards the origin. Solutions with initial conditions along
the directions of the two eigenvectors of M are straight half-lines (two such
solutions are shown in the picture); these are the solutions u(t) = eλjtcvj .
(Solutions with any other initial conditions are not straight lines.)

The point 0 is a hyperbolic equilibrium point.

4This means that if <λj = 0 then there are no solutions q(t)etλj with nonconstant
q(t).
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Figure 2. Asymptotically stable equilibrium point, nega-
tive eigenvalues.

Example 2: an asymptotically stable case, with nonreal eigenvalues.
For

M =

[
−1 −2

1 −3

]
with Λ =

[
−2 + i 0

0 −2− i

]
, S =

[
1 + i 1− i

1 1

]
The figure shows the field plot and two trajectories. All trajectories are

going towards the origin, though rotating around it. The equilibrium point
0 is hyperbolic.
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Figure 3. Asymptotically stable equilibrium point, nonreal eigenvalues.

Example 3: an unstable case, with one negative eigenvalue, and a positive
one.

For

M =

[
3 6

3 0

]
with Λ =

[
−3 0

0 6

]
, S =

[
1 2

−1 1

]
The figure shows the field plot. Note that there is a stable direction (in

the direction of the eigenvector corresponding to the negative eigenvalue),
and an unstable one (the direction of the second eigenvector, corresponding
to the positive eigenvalue). Any trajectory starting at a point not on the
stable direction has infinite limit as t→∞.

The equilibrium point 0 is a saddle point.
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Figure 4. Unstable equilibrium point, one positive eigenvalues.

Example 4: an unstable point, with both positive eigenvalues.
For

M =

[
5 2

1 4

]
with Λ =

[
3 0

0 6

]
, S =

[
1 2

−1 1

]
The field plot is similar to that that of Example 1, only the arrows have

opposite directions; the trajectories go away from the origin. In fact this
system is obtained from Example 1 by changing t into −t.

Example 5: the equilibrium point 0 is stable, not asymptotically stable.
For

M =

[
1 −2

1 −1

]
with Λ =

[
i 0

0 −i

]
, S =

[
1 + i 1− i

1 1

]
The trajectories rotate around the origin on ellipses, with axes determined

by the real part and the imaginary part of the eigenvectors.
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Figure 5. Stable, not asymptotically stable, equilibrium point.

5.9. Difference equations (Discrete dynamical systems). A first or-
der difference equation, linear, homogeneous, with constant coefficients, has
the form

(78) xk+1 = Mxk

where M is an n × n matrix, and xk are n-dimensional vectors. Given an
initial condition x0 the solution of (78) is uniquely determined: x1 = Mx0,
then we can determine x2 = Mx1, then x3 = Mx2, etc. Clearly the solution
of (78) with the initial condition x0 is

(79) xk = Mkx0

A second order difference equation, linear, homogeneous, with constant
coefficients, has the form

(80) xk+2 = M1xk+1 +M0xk

A solution of (80) is uniquely determined if we give two initial conditions,
x0 and x1. Then we can find x2 = M1x1 +M0x0, then x3 = M1x2 +M0x1

etc.
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Second order difference equations can be reduced to first order ones: let
yk be the 2n dimensional vector

yk =

[
xk

xk+1

]
Then yk satisfies the recurrence

yk+1 = Myk where M =

[
0 I
M0 M1

]
which is of the type (78), and has a unique solution if y0 is given.

More generally, a difference equation of order p which is linear, homoge-
neous, with constant coefficients, has the form

(81) xk+p = Mp−1xk+p−1 + . . .+M1xk+1 +M0xk

which has a unique solution if the initial p values are specified x0,x1 . . . ,xp−1.
The recurrence (81) can be reduced to a first order one for a vector of di-
mension np.

To understand the solutions of the linear difference equations it then
suffices to study the first order ones, (78).

5.10. Solutions of linear difference equations. Consider the equation
(78). If M has n independent eigenvectors v1, . . . ,vn (i.e. M is diagonaliz-
able) let S = [v1, . . . ,vm] and then M = SΛS−1 with Λ the diagonal matrix
with entries λ1, . . . , λn. The solution (79) can be written as

xk = Mkx0 = SΛkS−1x0

and denoting S−1x0 = b,

xk = SΛkb = b1λ
k
1v1 + . . .+ bnλ

k
nvn

hence solutions xk are linear combinations of λkj multiples of the eigenvectors
vj .

Example. Solve the recurrence relation zn+2 = 3zn+1 − 2zn if z0 = α,
z1 = β.

This is a scalar difference equation, and we could turn it into a first order
system. But, by analogy to higher order scalar differential equations, it may
be easier to work directly with the scalar equation. We know that there are
solutions of the form zn = λn, and substituting this in the recurrence we get
λn+2 = 3λn+1 − 2λn therefore λ2 − 3λ + 2 = 0, implying λ1 = 1, λ2 = 2,
or λ = 0. We found the solutions zn = 1 and zn = 2n. We can always
discard the value λ = 0 since it corresponds to the trivial zero solution. The
general solution is zn = c1 + 2nc2. The constants c1, c2 can be determined
from the initial conditions: z0 = c1 + c2 = α, z1 = c1 + 2c2 = β, therefore
zn = (2α+ β) + (β − α)2n.

If M is not diagonalizable, just as in the case of differential equations,
then consider a matrix S so that S−1MS is in Jordan normal form.
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Consider the example of a 2×2 Jordan block: M = SJS−1 with J given by
(60). As in Let S = [y1,y2] where y1 is the eigenvector of M corresponding
to the eigenvalue λ and y2 is a generalized eigenvector. Using (55) we obtain
the general solution

xk = [y1,y2]

[
λk k λk−1

0 λk

] [
b1
b2

]
= b1λ

ky1 + b2

(
kλky1 + λky2

)
and the recurrence has two linearly independent solutions of the form λky1

and q(k)λk where q(k) is a polynomial in k of degree one.
In a similar way, for p× p Jordan blocks there are p linearly independent

solutions of the form q(k)λk where q(k) are polynomials in k of degree at
most p− 1, one of then being constant, equal to the eigenvector.

Example. Solve the recurrence relation yn+3 = 9 yn+2 − 24 yn+1 + 20yn.
Looking for solutions of the type yn = λn we obtain λn+3 = 9λn+2 −

24λn+1+20λn which implies (disregarding λ = 0) that λ3−9λ2+24λ−20 =

0 which factors (λ− 5) (λ− 2)2 = 0 therefore λ1 = 5 and λ2 = λ3 = 2. The
general solution is zn = c15n + c22n + c3n2n.

5.11. Stability. Clearly the constant zero sequence xk = 0 is a solution of
any linear homogeneous discrete equation (78): 0 is an equilibrium point
(a steady state).

As in the case of differential equations, an equilibrium point of a difference
equation is called asymptotically stable, or an attractor, if solutions starting
close enough to the equilibrium point converge towards it.

For linear difference equations this means that limk→∞ xk = 0 for all
solutions xk. This clearly happens if and only if all the eigenvalues λj of M
satisfy |λj | < 1.

If all eigenvalues have either |λj | < 1 or |λj | = 1 and for eigenvalues of
modulus 1, the dimension of the eigenspace equals the multiplicity of the
eigenvalue, 0 is a stable point (or neutral).

In all other cases the equilibrium point is called unstable.

5.12. Example: Fibonacci numbers.

0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, . . .

this is one of the most famous sequence of numbers, studied for more that 2
milennia (it fist appeared in ancient Indian mathematics), which describes
countless phenomena in nature, in art and in sciences.

The Fibonacci numbers are defined by the recurrence relation

(82) Fk+2 = Fk+1 + Fk

with the initial condition F0 = 0, F1 = 1.
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Substituting Fk = λk into the recurrence (82) it follows that λ2 = λ + 1
with solutions

λ1 =
1 +
√

5

2
= φ = the golden ratio, λ2 =

1−
√

5

2

Fk is a linear combination of λk1 and λk2: Fk = c1λ
k
1 + c2λ

k
2. The values of

c1, c2 can be found from the initial conditions:
Note that the ratio of two consecutive Fibonacci numbers converges to

the golden ratio:

lim
k→∞

Fk+1

Fk
= φ

5.13. Positive matrices.

Definition 24. A positive matrix is a square matrix whose entries are
all positive numbers.

Caution: this is not to be confused with positive definite self adjoint
matrices, which will be studied later.

Positive matrices have countless applications and very special properties.
Notations.

x ≥ 0 denotes a vector with all components xj ≥ 0

x > 0 denotes a vector with all components xj > 0

Theorem 25. Perron-Frobenius Theorem
Let P be a positive matrix: P = [Pij ]i,j=1,...,n, Pij > 0.
P has a dominant eigenvalue (or, Perron root, or Perron-Frobenius eigen-

value) r(P ) = λ1 with the following properties:
(i) λ1 > 0 and the associated eigenvector v1 is positive: v1 > 0.
(ii) λ1 is a simple eigenvalue.
(iii) All other eigenvalues have smaller modulus: if |λj | < λ1 for all

eigenvalues λj of P , j > 1.
(iv) All other eigenvectors of P are not nonnegative, vj 6≥ 0 (they have

have at least one negative or nonreal entry).
(v) λ1 satisfies the following maximin property: λ1 = maxT where

T = {t ≥ 0 |Px ≥ tx, for some x ≥ 0, x 6= 0}
(v’) λ1 satisfies the following minimax property: λ1 = minS where

S = {t ≥ 0 |Px ≤ tx, for all x ≥ 0}
(vi) Also

min
i

∑
j

Pij ≤ λ1 ≤ max
i

∑
j

Pij

The proof of the Perron theorem will not be given here.

5.14. Markov chains. Markov processes model random chains of events
events whose likelihood depends on, and only on, what happened last.
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5.14.1. Example. Suppose that it was found that every year 1% of the US
population living in costal areas moves inland, and 2% of the US population
living inland moves to costal areas5. Denote by xk and yk the number of
people living in costal areas, respectively inland, at year k. We are interested
to understand how the population distribution among these areas evolves in
the future.

Assuming the US population remains the same, in the year k+ 1 we find
that xk+1 = .99xk + .02yk and yk+1 = .01xk − .98yk or

(83) xk+1 = Mxk

where

xk =

[
xk
yk

]
, M =

[
.99 .02
.01 .98

]
Relation (83) modeling our process is a first order difference equation.

Note that the entries of the matrix M are nonnegative (they represent a
percentage, or a probability), and that its columns add up to 1, since the
whole population is subject to the process: any person of the US population
is in one of the two regions.

Question: what happens in the long run, as k → ∞? Would the whole
population eventually move to costal areas?

To find the solution xk of (83) we need the eigenvalues and eigenvectors of
M : it is easily calculated that there is one eigenvalue equal to 1 correspond-
ing to v1 = (2, 1)T , and an eigenvalue .97, corresponding to v2 = (−1, 1)T .
(Note that M is a positive matrix, and the Perron-Frobenius Theorem ap-
plies: the dominant eigenvalue is 1, and its eigenvector has positive compo-
nents, while the other eigenvector has both positive and nonpositive com-
ponents.)

Then
xk = c1v1 + c2 .97kv2

and
x∞ = lim

k→∞
xk = c1v1

The limit is an eigenvector corresponding to the eigenvalue 1!
In fact this is not a big surprise if we reason as follows : assuming that xk

converges (which is not guaranteed without information on the eigenvalues
of M) then taking the limit k → ∞ in the recurrence relation (83) we find
that x∞ = Mx∞ hence the limit x∞ is an eigenvector of M corresponding
to the eigenvalue 1, or the limit is 0 - which is excluded by the interpretation
that xk + yk = const=the total population.

Note: all the eigenvectors corresponding to the eigenvalue 1 are steady-
states: if the initial population distribution was x0 = av1 then the popula-
tion distribution remains the same: xk = x0 for all k (since Mv1 = v1).

Exercise. What is the type of the equilibrium points c1v1 (asymptoti-
cally stable, stable, unstable)?

5These are not real figures. Unfortunately, I could not find real data on this topic.
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In conclusion, in the long run the population becomes distributed with
twice as many people living in costal area than inland.

5.14.2. Markov matrices. More generally, a Markov process is governed by
an equation (83) where the matrix M has two properties summarized as
follows.

Definition 26. An n × n matrix M = [Mij ] is called a Markov matrix
(or a Stochastic matrix) if:
(i) all Mij ≥ 0, and
(ii) each column adds up to 1:

∑
iMij = 1.

Theorem 27. Properties of Markov matrices
If M is a Markov matrix then:

(i) λ = 1 is an eigenvalue.
(ii) All the eigenvalues satisfy |λj | ≤ 1. If all the entries of M are positive,
then |λj | < 1 for j > 1.

(iii) If for some k all the entries of Mk are positive, then λ1 = 1 has
multiplicity 1 and all the other eigenvalues satisfy |λj | < 1 for j = 2, . . . , n.

Proof.
(i) The matrix M − I is not invertible, since all the columns of M add

up to 1, and therefore the columns of M − I add up to zero. Therefore
det(M − I) = 0 and 1 is an eigenvalue.

(ii) and (iii) follow from Perron-Frobenius Theorem 25. 2

Note that for general Markov matrices all eigenvectors corresponding to
the eigenvalue 1 are steady states.

6. More functional calculus

6.1. Discrete equations versus differential equations.
Suppose a function y(t) satisfies a the differential equation

(84)
dy

dt
= ay(t), y(0) = y0

with solution y(t) = eaty0

Discretize the equation: fix some small h and consider only the values t =
tk = kh. Using the linear approximation

(85) y(tk+1) = y(tk) + y′(tk)h+O(h2)

then
hy′(tk) ≈ y(tk+1)− y(tk)

which used in (86) gives the difference equation

(86) ỹ(tk+1)− ỹ(tk) = ahỹ(tk), ỹ(0) = y0

with solution ỹ(tk) = (1 + ah)ky0
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The discrete equation (86) is an approximation of the continuous equation
(86).

We can get better approximations in two ways. Taking h smaller and
smaller in (86), ỹ(tk) approaches y(t):

ỹ(tk) = (1 + ah)tk/h y0 → eatky0 as h→ 0

.
Another way to improve the approximation is to retain more terms in the

approximation (85):

y(tk+1) = y(tk) + y′(tk)h+ 1
2y
′′(tk)h

2 + 1
6y
′′′(tk)h

3 + . . .

The limit is the Taylor series

y(tk+1) = y(tk + h) =

∞∑
k=0

1

n!

dn

dtn
y(tk)h

n

Noting that dn

dtn is the n-th power of the linear operator d
dt one can formally

write

y(t+ h) =

( ∞∑
k=0

1

n!

dn

dtn
hn

)
y(t) = eh

d
dt y(t)

therefore

(87) y(t+ h) = eh
d
dt y(t)

which a remarkable formula: the exponential of differentiation is a shift.
Note that the fact that y(t) solves (86) means that y(t) is an eigenfunction

of the operator d
dt corresponding to the eigenvalue a. By §5.5 this means

that y(t) is an eigenfunction of eh
d
dt corresponding to the eigenvalue eah.

Therefore eh
d
dt y(t) = eahy(t)

6.2. Functional calculus for digonalizable matrices. LetM be a square
n × n matrix, assumed diagonalizable: it has n independent eigenvectors
v1, . . . ,vn corresponding to the eigenvalues λ1, . . . , λn and if S = [v1, . . . ,vn]
then S−1MS = Λ a diagonal matrix with λ1, . . . , λn on its diagonal.

6.2.1. Polynomials of M . We looked at positive integer powers of M , and
we saw that Mk = SΛkS−1, where the power k is applied to each diagonal
entry of Λ. To be consistent we clearly need to define M0 = I.

Recall that M is invertible if and only if all its eigenvalues are not zero.
Assume this is the case. Then we can easily check that M−1 = SΛ−1S−1

where the power k is applied to each diagonal entry of Λ. We can then define
any negative integer power of M .

If p(t) = ant
n + . . .+ a1t+ a0 is a polynomial in t, we can easily define

p(M) = anM
n + . . .+ a1M + a0I = S p(Λ)S−1

where p(Λ) is the diagonal matrix with p(λj) on the diagonal.
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6.2.2. The exponential eM . We defined the exponential eM using its Taylor
series

eM =
∞∑
k=0

1

k!
Mk

and eM = SeΛS−1 where eΛ is the diagonal matrix with eλj on the diagonal.

6.2.3. The resolvent. For which numbers z ∈ C the matrix zI −M has an
inverse, and what are its eigenvalues? Clearly the matrix zI−M is invertible
for all z which differ from the eigenvalues of M (in the infinite dimensional
case things are not quite so).

The matrix valued function R(z) = (zI − M)−1, defined for all z 6=
λ1, . . . λn is called the resolvent of M . The resolvent has many uses, and is
particularly useful in infinite dimensions.

Let z = 1. If M is diagonalizable then (I −M)−1 = S (zI − Λ)−1 S−1

where (zI − Λ)−1 is the diagonal matrix with (z − λj)−1 on the diagonal.
Here is another formula, very useful for the infinite dimensional case: if

M is diagonalizable, with all the eigenvalues satisfying |λj | < 1

then

(88) (I −M)−1 = I +M +M2 +M3 + . . .

which follows from the fact that

1

1− λj
= 1 + λj + λ2

j + λ3
j + . . . if |λj | < 1

The resolvent is extremely useful for nondiagonalizable cases as well. In
infinite dimensions the numbers z for which the resolvent does not exist, the
spectrum of the linear transformation, (they may or may nor be eigenval-
ues) play the role of the eigenvalues in finite dimensions.

Returning to finite dimensions, if M is not diagonalizable, formula (88)
may not hold (see for example a 2 dimensional Jordan block with zero eigen-
value). We will see that (88) is true for matrices of norm less than 1 - this is
a good motivation for introducing the notion of norm of a matrix later on.

6.2.4. The square root of M . Given the diagonalizable matrix M can we
find matrices R so that R2 = M , and what are they?

Using the diagonal form of M we have: R2 = SΛS−1 which is equivalent
to S−1R2S = Λ and therefore (S−1RS)2 = Λ.

Assuming that S−1RS is diagonal, then S−1RS =diag(±λ1/2
1 , . . . ,±λ1/2

n )
and therefore

(89) R = S

 σ1 . . . 0
...

...
0 . . . σn

S−1, σj ∈ {1,−1}

There are 2n such matrices!
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But there are also matrices with S−1RS not diagonal. Take for example
M = I, and find all the matrices R with R2 = I. Then besides the four
diagonal solutions

R =

[
σ1 0
0 σ2

]
, σ1,2 ∈ {1,−1}

there is the two parameter family of the solutions

R =

[
±
√

1− ab a
b ∓

√
1− ab

]
Some of these matrices have nonreal entries!

6.2.5. Functional calculus for diagonalizable matrices. What other functions
of M can we define? If M is diagonalizable it seems that given a function
f(t) we can define f(M) provided that all f(λj) are defined (a careful con-
struction is needed).

Diagonalizable matrices are thus very ”user friendly”. Later on we will
see that there is a quick test to see which matrices are diagonalizable, and
which are not. It will be proved that M is diagonalizable if and only if
it commutes with its adjoint: MM∗ = M∗M . Such matrices are called
normal, and this is the gateway to generalizing functional calculus to linear
operators in infinite dimensions.

6.2.6. Working with Jordan blocks. The calculations done for 2 and 3 di-
mensional Jodan blocks in §5.3 can be done in a tidy way for the general
n× n blocks using functional calculus.

First note that any n× n Jordan block, with eigenvalue λ can be written
as

J = λI +N

where N is a matrix whose only nonzero entries are 1 above the diagonal.
A short calculation shows that N2 only nonzero entries are a sequence of
1’s at a distance two above diagonal, and so on: each additional power of N
pushes the slanted line of 1 moves toward the upper right corner. Eventually
Nn = 0. For example in dimension four:

N =


0 1 0 0

0 0 1 0

0 0 0 1

0 0 0 0

N2 =


0 0 1 0

0 0 0 1

0 0 0 0

0 0 0 0

N3 =


0 0 0 1

0 0 0 0

0 0 0 0

0 0 0 0

N4 = 0

Since I and N commute we can use the binomial formula which gives

Jk = (λI +N)k =
k∑
j=0

(
k
j

)
λk−jN j
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which for k > n − 2 equals
∑n−1

j=0

(
k
j

)
λk−jN j . See (55), (61) for n = 2

and n = 3.
Also because I and N commute

eJ = eλI+N = eλIeN = eλ
n−1∑
k=0

1

k!
Nk

See (56), (62) for n = 2 and n = 3.

Exercise. What is (I−J)−1 for J an n×n Jordan block with eigenvalue
λ?

6.2.7. The Cayley-Hamilton Theorem. Here is a beautiful fact:

Theorem 28. The Cayley-Hamilton Theorem. Let M be a square
matrix, and p(λ) = det(M − λI) be its characteristic polynomial.

Then p(M) = 0.

Note that if M is n × n then it follows in particular that Mn is a linear
combinations of earlier powers I,M,M2, . . . ,Mn−1.

Proof of the Cayley-Hamilton Theorem.
Assume first that M is diagonalizable: M = SΛS−1. Then p(M) =

p(SΛS−1) = S p(Λ)S−1 where p(Λ) is the diagonal matrix having p(λj) on
the diagonal. Since p(λj) = 0 for all j then p(Λ) = 0 and the theorem is
proved.

In the general case M = SJS−1 where J is a Jordan normal form. Then
p(J) is a block diagonal matrix, the blocks being p applied to standard
Jordan blocks. Let J1 be any one of these blocks, with eigenvalue λ1 and
dimension p1. Then the characteristic polynomial of M contains the factor
(λ1 − λ)p1 . Since (λ1 − J1)p1 = (−N1)p1 = 0 then p(J1) = 0. As this is true
for each Jordan block composing J , the theorem follows. 2

6.3. Commuting matrices. The beautiful world of functional calculus
with matrices is marred by noncommuatitivity. For example eAeB equals
eA+B only if A and B commute, and the square (A + B)2 = A2 + AB +
BA+B2 cannot be simplified to A2 + 2AB+B2 unless A and B commute.

When do two matrices commute?

Theorem 29. Let A and B be two diagonalizable matrices.
Then AB = BA if and only if they have the same matrix matrix of eigen-

vectors S (they are simultaneously diagonalizable).

Proof. Assume that A = SΛS−1 and B = SΛ′S−1 where Λ,Λ′ diagonal.
Then, since diagonal matrices commute,

AB = SΛS−1SΛ′S−1 = SΛΛ′S−1 = SΛ′ΛS−1 = SΛ′S−1SΛS−1 = BA

Conversely, assume AB = BA and let S = [v1, . . . ,vn] be the matrix
diagonalizing A, with Avj = αjvj . Then BAvj = αjBvj so ABvj = αjBvj
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which means that both vj and Bvj are eigenvectors of A corresponding to
the same eigenvalue αj .

If all the eigenvalues of A are simple, then this means that Bvj is a scalar
multiple of vj so S diagonalizes B as well.

If A has multiple eigenvalues then we may need to change S a little bit
(each set of eigenvectors of A corresponding to the same eigenvalue), to
accommodate B.

First replaceA by a diagonal matrix: AB = BA is equivalent to SΛS−1B =
BSΛS−1 therefore ΛS−1BS = S−1BSΛ. Let C = S−1BS, satisfying
ΛC = CΛ.

We can assume that the multiple eigenvalues of Λ are grouped together,
so that Λ is built of diagonal blocks of the type αjI of dimensions dj , with
distinct αj .

A direct calculation shows that ΛC = CΛ is equivalent to the fact that
C is block diagonal with blocks of dimensions dj . Since C is diagonalizable,
each block can be diagonalized: C = TΛ′T−1, and this conjugation leaves
Λ invariant: TΛT−1 = Λ.

Then the matrix ST diagonalizes both A and B. 2

Examples. Any two functions of a matrix M , f(M) and g(M), commute.


