1. Show that the space of all solutions of the linear equation $u^{\prime \prime}=u$ is a linear space. You may, or may not, use the fact that

$$
\left\{u=\text { real valued function } \mid u^{\prime \prime}=u\right\}=\left\{C_{1} e^{t}+C_{2} e^{-t} \mid C_{1,2} \in \mathbb{R}\right\}
$$

2. a) Show that the set of continuous functions over the interval $[a, b]$:

$$
C[a, b]=\{f:[a, b] \rightarrow \mathbb{R} \mid f \text { continuous on }[a, b]\}
$$

is a linear space over the scalar field \mathbb{R}.
b) Is it a linear space over the scaler field \mathbb{C} ? Why?
c) Show that $C_{0}[a, b]:=\{f \in C[a, b] \mid f(a)=f(b)=0\}$ is a subspace of $C[a, b]$.
d) Is $\left\{f \in C[a, b] \mid \int_{a}^{b} f(x) d x=0\right\}$ a subspace of $C[a, b]$? Justify.
3. a) Let X and Y be two vector spaces over F. Let

$$
X \oplus Y=\{(\mathbf{x}, \mathbf{y}) \mid \mathbf{x} \in X, \mathbf{y} \in Y\}
$$

Show that $X \oplus Y$ is a vector space over F with addition and scalar multiplication defined component-wise, as

$$
\left(\mathbf{x}_{1}, \mathbf{y}_{1}\right)+\left(\mathbf{x}_{2}, \mathbf{y}_{2}\right)=\left(\mathbf{x}_{1}+\mathbf{x}_{2}, \mathbf{y}_{1}+\mathbf{y}_{2}\right), \quad c(\mathbf{x}, \mathbf{y})=(c \mathbf{x}, c \mathbf{y})
$$

$X \oplus Y$ is called the (external) direct sum of the vector spaces X and Y.
b) Given $\left\{\mathbf{v}_{i}\right\}_{i=1, \ldots n}$ a basis for X, and $\left\{\mathbf{w}_{j}\right\}_{j=1, \ldots, k}$ a basis for Y, find a basis for $X \oplus Y$. Express the dimension of $X \oplus Y$ in terms of $\operatorname{dim} X$ and $\operatorname{dim} Y$.
4. In each of the following cases, establish whether or not the given set of vectors is linearly independent or linearly dependent in the given vector/linear space. Explain.
a) $1, \cos t, \cos 2 t, \ldots, \cos n t$ in $C[0,2 \pi]$.
b) $p(t)=(t-1)(t-2)(t-3), q(t)=t(t-2)(t-3), r(t)=t(t-1)(t-3), s(t)=t(t-1)(t-2)$ in \mathcal{P}.
c) $t^{\sqrt{2}}, t^{e}, t^{\pi}$ in $C(0, \infty)$
d) $\cosh x, \cosh (x-1)$ in $C(\mathbb{R})$.
e) $(1,1,1,1),(0,2,1,-1),(2,-4,-1,5)$ in \mathbb{R}^{4}.
f) $(1,1,1,1),(0,2,1,-1),(2,-1,1,-1)$ in \mathbb{R}^{4}.

