Recall the following facts on the complex roots of 1:
The n complex solutions of the equation $z^{n}=1$, called the $n^{\text {th }}$ roots of unity, are $z_{k}=\exp [2 \pi i k / n], k=0,1, \ldots, n-1$.
z_{1} is called the primitive $n^{\text {th }}$ root of unity. We have $z_{k}=z_{1}^{k}$.
Recall the formula $z^{n}-1=(z-1)\left(z^{n-1}+z^{n-2}+\ldots+z+1\right)$. This shows that $z_{1}, z_{2}, \ldots, z_{n-1}$ satisfy $z^{n-1}+z^{n-2}+\ldots+z+1=0$.

1. Let $w=e^{2 \pi i / n}$ be the primitive $n^{\text {th }}$ root of unity.

Consider the matrix

$$
U=\frac{1}{\sqrt{n}}\left[w^{j k}\right]_{j, k=0,1, \ldots, n-1}
$$

which is, in fact, the Fourier Matrix:

$$
U=\frac{1}{\sqrt{n}}\left[\begin{array}{ccccc}
1 & 1 & 1 & \cdots & 1 \\
1 & w & w^{2} & \cdots & w^{n-1} \\
1 & w^{2} & w^{4} & \cdots & w^{2(n-1)} \\
\vdots & \vdots & \vdots & & \vdots \\
1 & w^{n-1} & w^{2(n-1)} & \cdots & w^{(n-1)^{2}}
\end{array}\right]
$$

Show that U is unitary.
2. Find the matrix P which takes any vector in \mathbb{R}^{4} to its orthogonal projection on the $(2-\mathrm{d})$ plane spanned by the vectors $(1,4,4,1)$ and $(2,9,8,2)$.
3. Find the $Q R$ factorization of the matrix $\left[\begin{array}{cc}\cos t & \sin t \\ \sin t & 0\end{array}\right]$. Show all the steps in your calculations, made without the use of a symbolic calculation software.
4. If Q is an orthogonal matrix, is the same true for Q^{5} ?

