1. a) Find a unitary similarity transformation which brings the (lower triangular) matrix $\left[\begin{array}{ll}a & 0 \\ b & c\end{array}\right]$ to upper triangular form.
b) Find a unitary similarity transformation which brings

$$
B=\left[\begin{array}{llllll}
1 & 0 & 1 & 1 & 0 & 1 \\
1 & 2 & 0 & 0 & 0 & 0 \\
0 & 0 & 2 & 0 & 1 & 1 \\
0 & 0 & 1 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 1 & 1
\end{array}\right]
$$

into upper triangular form. Hint: can you use $a)$?
c) What are the eigenvalues of B ?
2. Let N be a normal matrix, with eigenvalues/vectors $\lambda_{k}, \mathbf{v}_{k}, k=$ $1, \ldots, n$.
a) What are the eigenvalues/vectors of its adjoint N^{*} ?
b) If U is a unitary matrix diagonalizing N, what unitary matrix will diagonalize N^{*} ?
3. a) Let \mathbf{u} be a unit vector in \mathbb{C}^{n}. Show that uu* is the matrix which represents the orthogonal projection along the direction of \mathbf{u}.
b) Let A be an $n \times n$ self-adjoint matrix and $\mathbf{u}_{1}, \mathbf{u}_{2}, \ldots, \mathbf{u}_{n}$ its orthonormal eigenvectors. Show the spectral decomposition of A :

$$
A=\lambda_{1} \mathbf{u}_{1} \mathbf{u}_{1}^{*}+\lambda_{2} \mathbf{u}_{2} \mathbf{u}_{2}^{*}+\ldots \lambda_{n} \mathbf{u}_{n} \mathbf{u}_{n}^{*}
$$

The matrices $\mathbf{u}_{1} \mathbf{u}_{1}^{*}, \mathbf{u}_{2} \mathbf{u}_{2}^{*}, \ldots, \mathbf{u}_{n} \mathbf{u}_{n}^{*}$ are called spectral projections.
4. Let $a>0$ and k be constants. Calculate

$$
\int_{-\infty}^{\infty} e^{-a x^{2}+k x} d x
$$

(Hint: complete the square and use the fact that $\int_{-\infty}^{\infty} e^{-y^{2}} d y=\sqrt{\pi}$.)
5. Integrals as in problem 4. are generalized to several dimensions as

$$
\mathcal{J}=\int_{-\infty}^{\infty} \cdots \int_{-\infty}^{\infty} e^{-\langle\mathbf{x}, A \mathbf{x}\rangle+\langle\mathbf{k}, \mathbf{x}\rangle} d x_{1} \cdots d x_{n}
$$

where A is a positive definite matrix (to ensure that the integrals converge), and \mathbf{k} is a constant vector.

You are asked to calculate \mathcal{J} using the following steps.
I. Change coordinates in \mathbb{R}^{n} to diagonalize the quadratic form, and show that in these new coordinates

$$
\mathcal{J}=\int_{-\infty}^{\infty} \cdots \int_{-\infty}^{\infty} e^{-\langle\mathbf{y}, \Lambda \mathbf{y}\rangle+\langle B \mathbf{k}, \mathbf{y}\rangle} d y_{1} \cdots d y_{n}
$$

where B is a constant matrix, and Λ is a diagonal matrix, which you need to find (in terms of A).
(Hint: unitary transformations preserve lengths, angles, hence volumes and the element of volume: if $\mathbf{y}=U \mathbf{x}$ with U unitary then $d x_{1} \cdots d x_{n}=$ $d y_{1} \cdots y_{n}$.)
II. Use an affine change of coordinates $\mathbf{y}=\mathbf{w}+\mathbf{b}$ with \mathbf{b} a constant vector that you need to find so that you complete the squares in the exponential:

$$
e^{-\langle\mathbf{y}, \Lambda \mathbf{y}\rangle+\langle B \mathbf{k}, \mathbf{y}\rangle}=e^{-\langle\mathbf{w}, \Lambda \mathbf{w}\rangle} e^{-\frac{1}{4}\langle E \mathbf{k}, \mathbf{k}\rangle}
$$

Find the vector \mathbf{b} and the matrix E (in terms of A).
III. Show that

$$
\mathcal{J}=C \pi^{n / 2} e^{-\frac{1}{4}\langle\mathbf{k}, E \mathbf{k}\rangle}
$$

and express the constant C in terms of A.
IV. Check that for $n=1$ your result agrees with the solution to problem 4.

