1. If every entry in an orthogonal matrix is either $\frac{1}{4}$ or $-\frac{1}{4}$, how big is the matrix?
2. Write the rank one matrix $M=\left[\begin{array}{ll}2 & 3 \\ 6 & 9\end{array}\right]$ as $\mathbf{x y}^{T}$ and write M^{T} in the same form.
3. Consider $M=\left[\begin{array}{lll}1 & 1 & 1 \\ 1 & 1 & 1\end{array}\right], \mathbf{b}=\left[\begin{array}{l}0 \\ 1\end{array}\right]$. Find the pseudoinverse M^{+} and the optimal solution of the system $M \mathbf{x}=\mathbf{b}$.
4. a) If $M M^{*}$ is invertible show that $M^{+}=M^{*}\left(M M^{*}\right)^{-1}$ in the following steps:
(i) the system $M \overline{\mathbf{x}}=\mathbf{b}$ has solutions for all \mathbf{b},
(ii) denoting temporarily $M_{+}=M^{*}\left(M M^{*}\right)^{-1}$ show that if $\overline{\mathbf{x}}=M_{+} \mathbf{b}$ then $M \overline{\mathrm{x}}=\mathbf{b}$,
(iii) $\overline{\mathrm{x}}$ defined above belongs to $\mathcal{N}(M)^{\perp}$.
b) With $M=\left[\begin{array}{ll}1 & 1\end{array}\right]$ find the optimal solution to $x+y=3$.
5. Find the pseudoinverse of $M=\left[\begin{array}{ll}3 & 0\end{array}\right]$.
