1. Quasi-triangular matrices: let

$$
A=\left[\begin{array}{cccccc}
a_{11} & \ldots & a_{1 k} & 0 & \ldots & 0 \\
\vdots & & \vdots & & & \\
a_{k 1} & \ldots & a_{k k} & 0 & \ldots & 0 \\
a_{k+1,1} & \ldots & a_{k+1, k} & a_{k+1, k+1} & \ldots & a_{k+1, n} \\
\vdots & & & & & \\
a_{n 1} & \ldots & a_{n k} & a_{n, k+1} & \ldots & a_{n n}
\end{array}\right]=\left[\begin{array}{ccc}
B & \mid & 0 \\
- & - & - \\
C & \mid & D
\end{array}\right]
$$

where B is a $k \times k$ matrix and D is $(n-k) \times(n-k)$. Show the nice formula
$\operatorname{det} A=\operatorname{det} B \operatorname{det} D$
2. Let $\mathcal{B}_{N}=$ the set of all linear combinations of $e^{i k t}, k=-N, \ldots, 0, \ldots N$, with complex coefficients. (Such linear combinations form a set of band limited functions.)

It is easy to see that \mathcal{B}_{N} is a linear space of functions over \mathbb{C}, and it can be shown that $e^{i k t}, k=-N, \ldots, 0, \ldots N$ are linearly independent. Assume these are true.
a) What is $\operatorname{dim} \mathcal{B}_{N}$?
b) Show that $\{1, \cos t, \ldots, \cos N t, \sin t, \ldots, \sin N t\}$ is a basis for \mathcal{B}_{N}.
3. Chebyshev polynomials $T_{n}(x)$ are defined by the recurrence relation

$$
T_{0}(x)=1, \quad T_{1}(x)=x, \quad T_{n+1}(x)=2 x T_{n}(x)-T_{n-1}(x) \text { for } n \geq 1
$$

a) Find $T_{2}(x), T_{3}(x), T_{4}(x)$.
b) Show that $T_{k}(\cos t)=\cos k t$ for $k=0,1,2,3,4$.
c) Show that $T_{0}(x), \ldots, T_{4}(x)$ form a basis for \mathcal{P}_{4}.

