Homework 2

Name(s):

1. Quasi-triangular matrices: let

$$A = \begin{bmatrix} a_{11} & \dots & a_{1k} & 0 & \dots & 0 \\ \vdots & \vdots & & & \\ a_{k1} & \dots & a_{kk} & 0 & \dots & 0 \\ a_{k+1,1} & \dots & a_{k+1,k} & a_{k+1,k+1} & \dots & a_{k+1,n} \\ \vdots & & & \\ a_{n1} & \dots & a_{nk} & a_{n,k+1} & \dots & a_{nn} \end{bmatrix} = \begin{bmatrix} B & \mid & 0 \\ - & - & - \\ C & \mid & D \end{bmatrix}$$

where B is a $k \times k$ matrix and D is $(n-k) \times (n-k)$. Show the nice formula

 $\det A = \det B \, \det D$

2. Let \mathcal{B}_N = the set of all linear combinations of e^{ikt} , $k = -N, \ldots, 0, \ldots, N$, with complex coefficients. (Such linear combinations form a set of *band limited* functions.)

It is easy to see that \mathcal{B}_N is a linear space of functions over \mathbb{C} , and it can be shown that $e^{ikt}, k = -N, \ldots, 0, \ldots, N$ are linearly independent. Assume these are true.

a) What is dim \mathcal{B}_N ?

b) Show that $\{1, \cos t, \ldots, \cos Nt, \sin t, \ldots, \sin Nt\}$ is a basis for \mathcal{B}_N .

3. Chebyshev polynomials $T_n(x)$ are defined by the recurrence relation

$$T_0(x) = 1$$
, $T_1(x) = x$, $T_{n+1}(x) = 2xT_n(x) - T_{n-1}(x)$ for $n \ge 1$

a) Find $T_2(x)$, $T_3(x)$, $T_4(x)$.

b) Show that $T_k(\cos t) = \cos kt$ for k = 0, 1, 2, 3, 4.

c) Show that $T_0(x), \ldots, T_4(x)$ form a basis for \mathcal{P}_4 .