1. Show that if the rows of a determinant of order n are linearly dependent, then also its columns are linearly dependent.
2. Let $A_{1}=\left[\begin{array}{l}1 \\ 0 \\ 2 \\ 2\end{array}\right], A_{2}=\left[\begin{array}{c}-1 \\ 1 \\ -1 \\ 0\end{array}\right], A_{3}=\left[\begin{array}{c}-1 \\ 2 \\ 0 \\ 2\end{array}\right], Y=\left[\begin{array}{l}1 \\ 1 \\ 3 \\ 4\end{array}\right], Z=\left[\begin{array}{l}2 \\ 1 \\ 3 \\ 4\end{array}\right]$.
a1) True or False? $Y \in S p\left(A_{1}, A_{2}, A_{3}\right)$.
a2) True or False? $Z \in S p\left(A_{1}, A_{2}, A_{3}\right)$.
b) Find a basis for $S p\left(A_{1}, A_{2}, A_{3}\right)$.

Justify all your answers!
3. Let $\mathcal{M}_{2,2}(\mathbb{R})$ be the linear space of all 2×2 matrices with the real entries. Prove that $\mathcal{M}_{2,2}(\mathbb{R})$ has dimension 4 and find a basis.
4. a) Consider the multiplication transformation $R_{t}: \mathbb{C} \rightarrow \mathbb{C}$ defined by $R_{t} z=e^{i t} z$. Show that this is a linear transformation. Use the polar form of complex numbers to show that this is a rotation of angle t of the complex plane.
b) Every complex number has the form $z=x_{1}+i x_{2}$ with $x_{1,2} \in \mathbb{R}$ uniquely determined, so we can think of \mathbb{C} as \mathbb{R}^{2} by identifying every $z \in \mathbb{C}$ with $\left(x_{1}, x_{2}\right) \in \mathbb{R}^{2}$. Write formulas for the rotation R_{t} as a linear transformation from \mathbb{R}^{2} to \mathbb{R}^{2}. Find its matrix in the standard basis

$$
\mathbf{e}_{1}=\left[\begin{array}{l}
1 \\
0
\end{array}\right], \quad \mathbf{e}_{2}=\left[\begin{array}{l}
0 \\
1
\end{array}\right]
$$

5. Consider a linear transformations $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{3}$ such that $T \mathbf{e}_{1}=\mathbf{e}_{3}$ and $T \mathbf{e}_{2}=3 \mathbf{e}_{1}$. Find the matrix of this transformation in standard bases and a formula for $T \mathbf{x}$.
