1. Let V be a vector space over F. A linear functional $B: V \oplus V \rightarrow F$ is called bilinear if it is linear in each argument, that is, if
$B\left(c \mathbf{u}_{1}+d \mathbf{u}_{2}, \mathbf{v}\right)=c B\left(\mathbf{u}_{1}, \mathbf{v}\right)+d B\left(\mathbf{u}_{2}, \mathbf{v}\right), \quad B\left(\mathbf{u}, c \mathbf{v}_{1}+d \mathbf{v}_{2}\right)=c B\left(\mathbf{u}, \mathbf{v}_{1}\right)+d B\left(\mathbf{u}, \mathbf{v}_{2}\right)$
for all scalars c, d and all vectors $\mathbf{u}_{1,2}, \mathbf{v}_{1,2} \in V$.
a) Find all the bilinear functionals $B: \mathbb{R}^{2} \oplus \mathbb{R}^{2} \rightarrow \mathbb{R}$.
(Hint: expand vectors in \mathbb{R}^{2} in a basis.)
b) Consider a bilinear functional $B: \mathbb{R}^{2} \oplus \mathbb{R}^{2} \rightarrow \mathbb{R}$ which also satisfies: $B(\mathbf{u}, \mathbf{u})=0$ for all $\mathbf{u} \in \mathbb{C}^{2}$ and $B\left(\mathbf{e}_{1}, \mathbf{e}_{2}\right)=1$. Show that $B(\mathbf{u}, \mathbf{v})= \pm \operatorname{det}[\mathbf{u} \mid \mathbf{v}]$.
c) Let \mathbf{u}, \mathbf{v} be two vectors in \mathbb{R}^{2}. When regarded geometrically as arrows staring at O , they determine a parallelogram. Show that the area of this parallelogram equals $\pm \operatorname{det}[\mathbf{u} \mid \mathbf{v}]$. (Hint: Show that this area is bilinear in (\mathbf{u}, \mathbf{v}) which also satisfies the conditions in b) above.)
d) Similarly, three vectors $\mathbf{u}, \mathbf{v}, \mathbf{w} \in \mathbb{R}^{3}$ determine a parallelepiped, whose volume equals $\pm \operatorname{det}[\mathbf{u}|\mathbf{v}| \mathbf{w}]$. How would you prove this similarly to the argument above in \mathbb{R}^{2} ?
2. a) Let A be an $n \times n$ matrix. Show that $\operatorname{det}(c A)=c^{n} \operatorname{det} A$.
b) When is it true that $\operatorname{det}(-A)=\operatorname{det}(A)$?
3. Consider the transformation of \mathbb{R}^{3} given by the matrix multiplication $\mathrm{x} \rightarrow M \mathrm{x}$ where

$$
M=\left[\begin{array}{ccc}
2 & 4 & 1 \\
3 & 1 & -1 \\
1 & 1 & 0
\end{array}\right]
$$

a) Find the range and the null space of this transformation, describing these subspaces by giving a basis and as geometrical objects in \mathbb{R}^{3}.
b) Find all the vectors $\mathbf{b} \in \mathbb{R}^{3}$ for which the system $M \mathbf{x}=\mathbf{b}$ is soluble.
c) Find the general solution to $M \mathbf{x}=\mathbf{0}$.
4. You showed that $\mathcal{M}_{2,2}(\mathbb{R})$, the set of 2×2 matrices with the real entries, is a linear space of all 2×2 of dimension 4 .
a) Show that the trace

$$
\operatorname{Tr}: \mathcal{M}_{2,2}(\mathbb{R}) \rightarrow \mathbb{R}, \quad \operatorname{Tr}(A)=A_{11}+A_{22}
$$

is a linear functional and use this to show that the set of matrices of zero trace form a subspace in $\mathcal{M}_{2,2}(\mathbb{R})$.
b) What is the dimension of the subspace of matrices of zero trace?

