Always justify your answers!

1. Let M be an invertible matrix. Assume M has n independent eigenvectors $\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}$, corresponding to the eigenvalues $\lambda_{1}, \ldots, \lambda_{n}$.
a) If \mathbf{v} is an eigenvector of M, show that \mathbf{v} is also an eigenvector of M^{2} and, if the eigenvalue is nonzero, also of M^{-2}. What are the corresponding eigenvalues?
b) Find the eigenvectors and eigenvalues of M^{k} for any integer k.
c) Find the eigenvectors and eigenvalues of $M+c I$ (where c is a scalar and I is the identity matrix).
d) Find the eigenvectors and eigenvalues of $M^{2}-10 M+25 I$.
2. For each of the matrices A, B below: find the eigenvalues and eigenvectors.

If the matrix is diagonalizable explain why this is the case, find its diagonal form and a transition matrix. Otherwise, find a Jordan normal form and a transition matrix.

$$
A=\left[\begin{array}{cccc}
5 & 4 & 2 & -4 \\
0 & 1 & 0 & 0 \\
-2 & -2 & 0 & 2 \\
2 & 2 & 1 & -1
\end{array}\right], \quad B=\left[\begin{array}{cccc}
5 & 5 & 2 & -4 \\
0 & 1 & 0 & 0 \\
-2 & -2 & 0 & 2 \\
2 & 3 & 1 & -1
\end{array}\right]
$$

3. Solve problems number 5.2.n with $n \in\{1,3,5,6,7,8,9,10$,$\} from the handout of$ Wed. Oct. 4.
