Homework 7

Name(s):

Always justify your answers!

1. Let *M* be an invertible matrix. Assume *M* has *n* independent eigenvectors $\mathbf{v}_1, \ldots, \mathbf{v}_n$, corresponding to the eigenvalues $\lambda_1, \ldots, \lambda_n$.

a) If v is an eigenvector of M, show that v is also an eigenvector of M^2 and, if the eigenvalue is nonzero, also of M^{-2} . What are the corresponding eigenvalues?

b) Find the eigenvectors and eigenvalues of M^k for any integer k.

c) Find the eigenvectors and eigenvalues of M + cI (where c is a scalar and I is the identity matrix).

d) Find the eigenvectors and eigenvalues of $M^2 - 10M + 25I$.

2. For each of the matrices A, B below: find the eigenvalues and eigenvectors.

If the matrix is diagonalizable explain why this is the case, find its diagonal form and a transition matrix. Otherwise, find a Jordan normal form and a transition matrix.

A =	5	4	2	-4	,	B =	5	5	2	-4
	0	1	0	0			0	1	0	0
	-2	-2	0	2			-2	-2	0	2
	2	2	1	-1			2	3	1	-1

3. Solve problems number 5.2.*n* with $n \in \{1, 3, 5, 6, 7, 8, 9, 10, \}$ from the handout of Wed. Oct. 4.