1. Verify that the polarization identity

$$
\langle\mathbf{x}, \mathbf{y}\rangle=\frac{1}{4} \sum_{k=0}^{3} i^{k}\left\|i^{k} \mathbf{x}+\mathbf{y}\right\|^{2}
$$

holds in any inner product space $(V,\langle\rangle$,$) over the complex numbers F=\mathbb{C}$.
2. Consider \mathbb{R}^{3} equipped with the Euclidian inner product: $\langle\mathbf{x}, \mathbf{y}\rangle=\mathbf{x} \cdot \mathbf{y}$. Let $\mathbf{v}=(1,2,3) \in \mathbb{R}^{3}$.

Describe geometrically, and give algebraic formulas, for the set of all vectors $\mathbf{x} \in \mathbb{R}^{3}$ so that $\langle\mathbf{x}, \mathbf{v}\rangle=0$.
3. Consider the $C[0, \pi]$, the space of real valued, continuous functions on the interval $[0, \pi]$ equipped with the inner product $\langle f, g\rangle=\int_{0}^{\pi} f(t) g(t) d t$.
a) Show that $\mathcal{S}=\{1, \cos t, \cos (2 t), \ldots, \cos (n t), \ldots\}$ is an orthogonal set.
b) Suppose a function f has the form $f(t)=\sum_{k=0}^{n} c_{k} \cos (k t)$ where c_{k} are constants. Express each c_{k} in terms of the function f and functions in \mathcal{S}.
4. Consider the $C[-\pi, \pi]$, the space of complex valued, continuous function on the interval $[-\pi, \pi]$ equipped with the inner product $\langle f, g\rangle=\int_{-\pi}^{\pi} \overline{f(t)} g(t) d t$.
a) Show that $\mathcal{F}=\left\{e^{i n t} \mid n \in \mathbb{Z}\right\}$ is an orthogonal set.
b) Suppose a function f has the form $f(t)=\sum_{k=-N}^{N} c_{k} e^{i k t}$ where c_{k} are constants. Express each c_{k} in terms of the function f and functions in \mathcal{F}.
5. Consider the linear space of all real valued polynomials \mathcal{P} equipped with the inner product

$$
\langle f, g\rangle=\int_{-\infty}^{\infty} f(t) g(t) e^{-t^{2}} d t
$$

The standard basis of \mathcal{P} consists of all monomials $1, t, t^{2}, \ldots, t^{n} \ldots$..
Use a Gram-Schmidt process on $1, t, t^{2}$ to obtain a set of orthonormal polynomials with respect to this inner product.

Note: These polynomials $p_{0}, p_{1}, \ldots, p_{n} \ldots$ obtained by the Gram-Schmidt process are called Hermite polynomials. They are one family of orthogonal polynomials; other families are obtained using inner products with different weights.

