Singular Value Decomposition Theorem

Let M be an $m \times n$ matrix. Then

$$
M=U \Sigma V^{*}
$$

where:

- U is a unitary matrix whose columns are eigenvectors of $M M^{*}$
- V is a unitary matrix whose columns are eigenvectors of $M^{*} M$
- Σ is an $m \times n$ diagonal matrix

More precisely:
○ if $U=\left[\mathbf{u}_{1}, \ldots, \mathbf{u}_{r}, \mathbf{u}_{r+1}, \ldots, \mathbf{u}_{m}\right]$ and $V=\left[\mathbf{v}_{1}, \ldots, \mathbf{v}_{r}, \mathbf{v}_{r+1}, \ldots, \mathbf{v}_{n}\right]$ then for $j=1, \ldots r$ the vectors \mathbf{u}_{j} and \mathbf{v}_{j} correspond to the eigenvalue $\lambda_{j} \neq 0$ while all the others correspond to the eigenvalue 0 .

- The diagonal matrix Σ has $\Sigma_{j j}=\sigma_{j}=\sqrt{\lambda_{j}}$ for $j=1, \ldots, r$, and all other elements are 0.
- Also, $\mathbf{u}_{j}=\frac{1}{\sigma_{j}} M \mathbf{v}_{j}$ for $j=1, \ldots, r$.

