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3. Linear Transformations

3.1. Definition and examples. Let U, V be two vector spaces over the
same field F (which for us is R or C).

Definition 1. A linear transformation T : U → V is a function which is
linear, in the sense that it satisfies

(1) T (x + y) = T (x) + T (y) for all x,y ∈ U
and

(2) T (cx) = cT (x) for all x ∈ U, c ∈ F

The properties (1), (2) which express linearity, are often written in one
formula as

T (cx + dy) = cT (x) + dT (y) for all x,y ∈ U, c, d ∈ F
Note that if T is linear, then also

T

(
r∑

k=1

ckxk

)
=

r∑
k=1

ckT (xk) for all x1, . . . ,xr ∈ U, c1, . . . cr ∈ F

Notation: for linear transformations it is customary to denote simply
Tx rather than T (x).
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Note that a linear transformation takes the zero vector to the zero vector:
T0 = 0. (Indeed, take c = 0 in (2).)

Definition 2. A linear transformation φ : V → F , from a vector space to
its scalar field, is called a linear functional.

By contrast, linear transformations T : U → V with target space V not
the scalar field are also called linear maps, or linear operators.

Examples.
1. The transformation T : Rn → Rn given by T (x) = 2x is linear.
More generally, scaling transformation is linear: for some fixed scalar

λ ∈ R, let Tx = λx. In particular, Tx = 0 for all x is linear, and so is the
identity transformation, Ix = x.

And even more generally, dilations: T : Rn → Rn, T (x1, x2, . . . , xn) =
(λ1x1, λ2x2, . . . , λnxn) are linear.

The rotation of the plane by θ (rad) counterclockwise: R : C→ C, R(z) =
eiθz is linear (over F = C).

2. The projection operator P : R3 → R2 defined by P (x1, x2, x3) =
(x1, x2) is a linear operator.

The projection P : R3 → R, P (x1, x2, x3) = x2 is a linear functional.
3. The translation transformation T : Rn → Rn, given by T (x) = x + e1

is not linear.
The usually called ”linear function” f(x) = ax + b is not a linear trans-

formation. It is more correctly called an affine transformation. An affine
transformation is a linear transformation followed by a translation.

4. A few examples in infinite dimensions. Denote by P the vector space
of polynomials with coefficients in F .

o) Evaluation at some t0: the functional Et0 : P → F defined by Et0(p) =
p(t0) is linear.

a) The differentiation operator: D : P → P, defined by (Dp)(t) = p′(t)
is linear.

b) The integration operator: J : P → P, defined by (Jp)(t) =
∫ t
0 p(s)ds

is linear, and

c) so is the functional I : P → F , by Ip =
∫ 1
0 p(s)ds. Note that I is the

composition I = E1 ◦ J .

3.2. The matrix of a linear transformation.
I. A linear transformation is completely determined by its action on a

basis.
Indeed, let T : U → V be a linear transformation between two finite

dimensional vector spaces U and V . Let BU = {u1, . . . ,un} be a basis of U .
Then any x ∈ U can be uniquely written as

(3) x = x1u1 + . . .+ xnun for some x1, . . . , xn ∈ F
and by the linearity of T we have

(4) Tx = T (x1u1 + . . .+ xnun) = x1Tu1 + . . .+ xnTun
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hence, once we give the values Tu1, . . . , Tun then the action of T is deter-
mined on all the vectors in U .

II. To determine Tu1, . . . , Tun we need to specify the representation of
these vectors in a given basis of V . Let then BV = {v1, . . . ,vm} be a basis
of V , and denote by Mij the coefficients of these representations:

Tuj =
m∑
i=1

Mijvi, for some Mij ∈ F, for all j = 1, . . . , n

The matrix M = MT = [Mij ]i=1,...m,j=1,...n is called the matrix rep-

resentation of the linear transformation T in the bases BU and
BV .

Note that the matrix representation of a linear transformation depends
not only on the basis chosen for U and V , but also on the order on which
the vectors in each basis are enumerated. It would have been more precise
to write the two basis BU , BV as a multiplet, rather than a set.

Note. Let MT is the matrix representation of the linear transformation
T in the bases BU ,BV . Any x ∈ U can be represented as (3), and denote
Tx = y = y1v1 + . . . + ymvm. Then, organizing the coordinates of x,y as
columns, the action of T is matrix multiplication on the coordinate vector:

MT

 x1
...
xn

 =

 y1
...
ym


which can be seen after a direct verification: Tx =

∑
j xjTuj =

∑
j xj

∑
iMijvi =∑

i(
∑

jMijxj)vi =
∑

i yivi.
Note also the block representation of the matrix of T : if we organize the

coordinates M1j , . . . ,Mmj of Tuj as columns,

MT = [Tu1 |Tu2 | . . . |Tun]

From now on we have to write the coordinates of vectors as columns.

Conversely, every matrix determines a linear transformation. Let M be
an m× n matrix, and consider the transformation which multiplies vectors
x ∈ Rn by the matrix M

T : Rn → Rm, T (x) = Mx

T is a linear transformation (check!), whose matrix in the standard bases is
exactly M . Indeed,

Tx = Mx = M

 n∑
j=1

xjej

 =
n∑
j=1

xjMej
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where Mej is the column j of M (convince yourselves!), so

(5) Mej =

m∑
i=1

Mij ei

Note that (5) can be used to give a block representation of M where each
block is a column:

M = [Me1 |Me2 | . . . |Men]

Therefore any linear transformation is a matrix multiplication.

Example 1. Consider the standard basis {e1, e2} for C2, where

(6) e1 =

[
1
0

]
, e2 =

[
0
1

]
For any z ∈ C2 we have

z ≡
[
z1
z2

]
= z1

[
1
0

]
+ z2

[
0
1

]
= z1e1 + z2e2

C is a vector space over F = C, of dimension 1. Denote its standard basis
(consisting of {f1} for C, where f1 = [1].

Define a linear transformation T : C2 → C (note that here the scalars
are F = C, and n = 2, m = 1) be the linear transformation defined by its
action on the basis of its domain: let T (e1) = f1, T (e2) = −f1. By linearity,
its action on any element of C2 is completely determined:

T (z) = T (z1e1 + z2e2) = z1T (e1) + z2T (e2) = z1[1] + z2[−1] = (z1 − z2)[1]

The same calculation in matrix notation: [Mij ]i=1;j=1,2 = [1,−1] is the
matrix of T , and T (z) = Mz (with z written as a vertical string).

Example 2. Consider the standard basis pj(t) = tj , j = 0, 1, . . . , n of
Pn, and let us find the matrix representation of the differentiation operator
D : Pn → Pn, Dp = p′.

Noting that Dpk = kpk−1, the matrix of D has the block form

M = MD = [Dp0 |Dp1 |Dp2 | . . . |Dpn] = [0 | 1 | 2p1 | . . . |npn−1]]

=


0 1 0 0 . . . 0
0 0 2 0 . . . 0
...

...
0 0 0 0 . . . n
0 0 0 0 . . . 0
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3.3. Operations with linear transformations and with their asso-
ciated matrices. The sum of two linear transformations S, T : U → V is
defined like for any functions, as (S + T )(u) = Su + Tu and so is multipli-
cation by scalars, as (cT )(u) = cTu. It turns out that S + T and cT are
also linear transformations, and so is the composition:

Theorem 3. Let U, V, W be vector spaces over F , and fix some bases
BU , BV , BW . Let T, S : U → V be linear transformations, with matrix
representations MT , MS in the bases BU , BV .

(i) Any linear combination cS + dT : U → V is a linear transformations,
and its matrix representation is cMS + dMT (in the bases BU , BV ).

(ii) Let R : V →W be linear, with matrix MR in the basis BV , BW . Then
the composition R◦S : U →W , defined as (usually) by (R◦S)(x) = R(S(x))
is a linear transformation, with matrix MRMS (in the bases BU ,BW ).

The proof of the Theorem relies on immediate calculations; the calcula-
tions needed in part (ii) will be detailed below in §3.10.1 (and it shows why
we multiply matrices using that strange rule...). 2

For linear transformations we simply denote R ◦ S ≡ RS.
It is easy to check that the operations with linear transformations satisfy

the axioms of vector spaces, and the set of all linear transformations from
U to V , denoted L(U, V ) is a linear space. Moreover, for U = V , there is an
extra operation, the composition of linear transformations, which behaves
very nicely with respect to addition and scalar multiplication, in the sense
that usual algebra rules apply: (RS)T = R(ST ), R(cS+dT ) = cRS+dRT ,
cRS + dTS = (cR+ dT )S except that ”multiplication” is not commutative,
since, in general, RS does not equal SR (recall that, in general, for two
functions f, g, f ◦ g 6= g ◦ f).

3.4. Null space and range. The following definitions and properties are
valid in finite or infinite dimensions.

Let U, V be vector spaces over the same scalar field F .

Definition 4. Let T : U → V be a linear transformation.
The null space (or kernel) of T is

N (T ) = {x ∈ U ; Tx = 0}
The range of T is

R(T ) = {y ∈ V |y = Tx for some x ∈ U}

Example. Let T : R3 → R be the linear transformation defined by
T (x1, x2, x3) = x2 − 3x1 (this is a functional, to be more precise). Then
N (T ) = {(x1, x2, x3) ∈ R3 |x2 − 3x1 = 0} (a plane) and R(T ) = R.

Theorem 5. Let T : U → V be a linear transformation. Then:
(i) N (T ) is a subspace of U .
(ii) R(T ) is a subspace of V .
(iii) T is one to one if and only if N (T ) = {0}.
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Why: the proof of (i)-(ii) is immediate.
To show (iii), first assume that T is one-to-one. If x ∈ N (T ) then Tx =

0 = T0 hence x = 0 and therefore the only element ofN (T ) is 0. Conversely,
assume thatN (T ) = {0}. If x,y ∈ U are so that Tx = Ty then T (x−y) = 0
(because T is linear) which means that x−y ∈ N (T ), hence x−y = 0 which
implies that T is one-to-one. 2

One of the key features of linear transformations is that if a (linear)
property is valid at 0 then it is valid at any point. Theorem 5 (iii) illustrates
this principle: if T takes the value 0 only once, then, if T takes some value,
then it takes it only once.

Some buzz-words: the rank of T is

rank(T ) ≡ dimR(T )

and the nullity of T is

nullity(T ) ≡ dimN (T )

3.5. Column space and rank of a matrix. Recall that matrices are
convenient ways to represent linear transformations (once bases are chosen).
It is then useful to transcribe the notions of null space, nullity, range, and
rank for matrices.

Let M be an n×m matrix with entries in F , and T its associated linear
transformation T : Fn → Fm, TMx = Mx. Recall that M is the matrix of
TM associated to the standard bases.

Since vectors in R(TM ) have the form

Mx = M(
∑
j

xjej) =
∑
j

xjMej (∗)

we see that

(7) R(TM ) = Sp(Me1, . . . ,Men)

which is the space spanned by the columns of M , called the column space,
and which we will denote (by abuse of notation) by R(M).

A useful block notation for the matrix M is

M = [Me1 |Me2 | . . . |Men]

and this block writing is compatible with operations with matrices if we
write the coordinates of vectors vertically:

Mx = [Me1 |Me2 | . . . |Men]


x1
x2
. . .
xn


which by matrix multiplication equals (*), noting that Mejxj = xjMej
since xj is a scalar.
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The rank(TM ), is, by definition, the dimension of its range. It is natural
to define the rank of a matrix as

rank(M) = rank(TM ) = dim of the column space of M

Proposition 6. If dimSp(x1, . . . ,xk) = r > 0 then there are r vectors
independent among x1, . . . ,xk.

Here is an orderly procedure to choose them. If x1, . . . ,xk are linearly
independent then r = k and we found our basis. Otherwise one of the
x1, . . . ,xk is a linear combination of the others, say xk. Then r < k and
we disregard xk since Sp(x1, . . . ,xk) = Sp(x1, . . . ,xk−1). We continue: if
x1, . . . ,xk−1 are linearly independent then r = k−1 and we found our basis.
Otherwise one of the x1, . . . ,xk−1 is a linear combination of the others, say
xk−1. Then r < k − 1 and we disregard xk−1 etc. 2.

Let r = rankM . Then among the columns Mej of M there are r linearly
independent ones, by Proposition 6; this is called a basis column and is a
basis for R(TM ).

3.6. Rank, minors, the dimension of the span of a finite set. In Sec.
2.4 we found a test on how to decide if k vectors are linearly dependent or
not. We are now asking even more, how to find the maximal number of
independent vectors among them (this is the dimension of their span).

Let M = [Mij ]i=1,...n,j=1...,k be an n×k matrix. This could be the matrix
of a linear transformation T , and then the rank of M is dimR(TM ). Or, the
matrix M may be constructed so that its columns represent the coordinates
of k vectors x1, . . . ,xk in a chosen basis v1, . . . vn: xj =

∑
iMijvi; in this

case the rank of M is dimSp(x1, . . . ,xk). In this section we find a practical
way to determine the rank of a matrix.

Recall the following properties of determinants from Chapter 2:
1) The value of a determinant equals the value of the determinant obtained

by turning its lines into columns (detA =detAT ).
2) A determinant is zero if and only if some column is a linear combination

of the others (its columns are linearly dependent).
3) A determinant is zero if and only if some row is a linear combination

of the other rows (its rows are linearly dependent).
Definition. Let M be an n × k matrix, and p ∈ Z+, p ≤ min{k, n}.

Delete any n − p rows and k − p columns of M ; we are left with a p × p
sub-matrix. Its determinant is called a minor of order p.

Of course, there are many minors of any order.
In the following we assume that M is not the zero matrix.
Remark 3. Denote r = rankM . Then any collection of p ≥ r + 1

columns of M are linearly dependent, therefore any minor of order ≥ r + 1
is zero.

Then by Proposition 6, the rank of a matrix is the largest number r for
which there is a nonzero minor of order r of M .
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Examples.
(i) Determine the dimension of Sp(x1,x2,x3) where x1 = (2, 3, 1, 4)T , x2 =
(0,−2, 1, 3)T , x3 = (2, 5, 0, 1)T .
Solution. We form the matrix having as columns the coordinates of these
vectors:

(8) M = [x1 |x2 |x3] =


2 0 2
3 −2 5
1 1 0
4 3 1


The rank of M can be at most 3. The matrix has 4 minors of order

3 (obtained by deleting one of the four rows); a direct calculation shows
that they are all zero, hence the rank of M is less than 3. Now we look at
the minors of order 2, and we see that the upper left 2 by 2 submatrix has
nonzero determinant, hence the rank of M is 2, and so is dim Sp(x1,x2,x3).
Furthermore, this also shows that x1, x2 are linearly independent hence they
form a basis for Sp(x1,x2,x3).

(ii) Consider the linear transformation T : R3 → R4 given by Tx = Mx
where M is the matrix in (8). Find the dimension of the set of all vector y
which can be written as y = Tx for some x.
Solution. Of course, this is dimR(T ) = rank(T ) = rank(M) which we
found to be 2.

3.7. Systems of linear equations, column and null spaces. Note:

(0) A homogeneous system Mx = 0 has the set of solutions equal to N (M).

(1) The systemMx = b is solvable (it has solutions) if and only if b ∈ R(M).

To check if b belongs to R(M) (the column space of M), one can check
the rank of the so-called augmented matrix, obtained from M by adding b
as one more column, Maug = [M |b]. There are two possibilities: either
1o b ∈ R(M) hence b is linearly dependent of the columns on M , therefore
rankMaug = rankM , or
2o b 6∈ R(M) hence b is linearly independent of the columns on M , and
therefore rankMaug = 1 + rankM .

(2) Suppose the system Mx = b is solvable. Then its solution is unique if
and only if N (M) = {0} (why?).

(3) If x0 is a particular solution of Mx = b, then the set of all solutions is

x0 +N (M) = {x0 + z | z ∈ N (M)}

In other words:

(9) General solution=Particular solution + Homogeneous solutions
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Indeed, on one hand it is clear that all the vectors in x0 + N (M) solve
the same equation: M(x0 + z) = Mx0 = b. Conversely, any two solutions
x1, x2 of the same equation: Mx1 = b, Mx2 = b, differ by an element
x1 − x2 ∈ N (M).
(4) A solvable system Mx = b has a unique solution if and only if the
homogeneous equation Mx = 0 has a unique solution (which is, of course,
x = 0).

This is clear by (3) and property (iv) of Theorem 5.

3.7.1. An example. A theoretical way (not computationally efficient, usu-
ally) to solve a linear system Mx = b is illustrated here for M given by
(8) and b = (2β, α, 0, β)T . To establish if the system is solvable we find the
rank of the augmented matrix

(10) Maug =


2 0 2

∣∣ 2β
3 −2 5

∣∣ α
1 1 0

∣∣ 0
4 3 1

∣∣ β


The largest minor of Maug has order 4, and its determinant is zero (no calcu-
lation is needed, we saw that the first three columns are linearly dependent).
The minors of order 3 are obtained by deleting one row and one column.
Deleting the first column we obtain four minors:

det

 −2 5 α

1 0 0

3 1 β

 = α− 5β, det

 0 2 2β

1 0 0

3 1 β

 = 0

det

 0 2 2β

−2 5 α

3 1 β

 = 6α− 30β, det

 0 2 2β

−2 5 α

1 0 0

 = 2α− 10β

If α 6= 5β then rankMaug = 1 + rankM and the system is not solvable.
If α = 5β all the other minors of oder 3 are zero as well1, therefore

rankMaug = 2 = rankM and the system is solvable.
Let α = 5β, so that the system is solvable. To solve, identify one nonzero

minor of maximal order. Keep the the equations corresponding to the lines
present in the minor, and disregard the others (as they are linear combina-
tions of the former ones). We then keep only the variables corresponding
the the columns present in the minor, and take the others to the left side of
the equation; these variables will be free parameters. In our example, the

1Calculation of these minors can be avoided by noting that each of the first three
columns is a linear combination of the other two.
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system is:

2x1 +2x3 = 2β
3x1 −2x2 +5x3 = 5β
x1 +x2 = 0
4x1 +3x2 +x3 = β

Say we identify the top left 2 × 2 minor. We keep only the first two
equations and disregard the others. (To satisfy our need to be sure that
the last equations are just linear combinations of the first two, hence are
redundant, we can see that the four equations, i.e. the four rows of the
augmented matrix, satisfy the linear dependence: Arow1+B row2+Crow3+
D row4 = 0 for C = 17B + 6A,D = −2A− 5B and A,B arbitrary.)

So we rewrite the system as

2x1 = 2β −2x3
3x1 −2x2 = 5β −5x3

where x3 is arbitrary and it is treated as a parameter. The solution is

x1 = β − t, x2 = −β + t, x3 = t, with t arbitrary

or

(11)

 x1
x2
x3

 =

 β
−β
0

+ t

 −1
1
1


which illustrates (9).

For numerical calculation, Gauss elimination is certainly more numerically
efficient, see also §3.11.4.

3.8. Dimensionality properties.

Theorem 7. Let T : U → V be a linear transformation between two finite
dimensional vector spaces U and V . Let BU = {u1, . . . ,un} be a basis of U .
Then:

(i) R(T ) = Sp (Tu1, . . . , Tun).
(ii) T is one-to-one if and only if Tu1, . . . , Tun are linearly independent.
(iii) We have

dimU = dimR(T ) + dimN (T )

(in other words, rank(T ) + nullity(T ) = n).

Remarks.
1. Property (i) has already been established for standard bases, see (7).
1. Property (iii) can be interpreted intuitively as: when the operator T

acts on n dimensions, some directions collapse to zero (dimN (T ) of them),
and the rest span the range (their number is dimR(T )).

2. In the particular case of T = TM where T (x) = Mx as in §3.5:
◦ Property (i) has been established by (7).
◦ Property (ii) states that:
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Corollary 8. A solvable system Mx = b has a unique solution if and only
if the columns of M are independent.

If M is an m × n matrix, its columns are independent if and only if
n ≤ m (the number of columns does not exceed the number of rows) and the
rankM = n (maximal rank).

Proof of Theorem 7.
Note that (i) is immediately visible from (3), (4).
For property (ii), note that

∑
j cjTuj = 0 is equivalent to

∑
cjuj ∈ N (T ).

Now, T is one-to-one if and only if N (T ) = {0} (by Theorem 5 (iii)). If
N (T ) = {0} then

∑
cjuj = 0 which implies all cj = 0 hence Tu1, . . . , Tun

are independent. Conversely, assume Tu1, . . . , Tun are independent and let
x ∈ N (T ). Then x =

∑
j cjuj for some c′js. Then 0−Tx =

∑
j cjTuj hence

all cj = 0 and therefore x = 0, showing that N (T ) = {0}.
Property (iii) is proved as follows.
Let v1, . . . ,vr be a basis for R(T ). Therefore, vj = T (xj) for some

xj ∈ U , for all j = 1, . . . , r.
Now let z1, . . . zk be a basis for N (T ). Property (iii) is proved if we show

that B = {z1, . . . zk,x1, . . . xr} is a basis for U .
To show linear independence, consider a linear combination

(12) c1z1 + . . .+ ckzk + d1x1 + . . .+ drxr = 0

to which we apply T on both sides, and it gives

T (c1z1 + . . .+ ckzk + d1x1 + . . .+ drxr) = T0

and by linearity

c1Tz1 + . . .+ ckTzk + d1Tx1 + . . .+ drTxr = 0

and since Tzj = 0, and vj = Txj

d1v1 + . . .+ drvr = 0

which imply all dj = 0 since v1, . . . ,vr are linearly independent. Then (12)
becomes

c1z1 + . . .+ ckzk = 0

which implies all cj = 0 since z1, . . . zk are linearly independent. In conclu-
sion B is a linearly independent set.

To complete the argument we need to show that Sp(B) = U . For any
u ∈ U we have

Tu = d1v1 + . . .+ drvr

for some scalars d1, . . . dr. Note that

T (u− d1x1 − . . .− drxr) = Tu− d1v1 − . . .− drvr = 0

therefore u− d1x1 − . . .− drxr ∈ N (T ), so u− d1x1 − . . .− drxr = c1z1 +
. . .+ ckzk which shows that u ∈ Sp(B). 2
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3.8.1. More consequences of the Dimensionality Theorem 7 (iii). Let U, V be
finite dimensional vector spaces, and T : U → V be a linear transformation.

1. Suppose dimU = dimV . Then T is one to one ⇐⇒ T is onto

For systems this means that for a given square matrix M we have: the
homogeneous equation Mx = 0 has only the zero solution if and only if all
Mx = b are solvable.

Reformulated as: either all Mx = b are solvable, or Mx = 0 has nonzero
solutions, it is the celebrated Fredholm’s alternative.

To prove 1., note that: T is one to one ⇔ dimN (T ) = 0 (and by
Theorem 7 (iii)) ⇔ dimR(T ) = dimV which means R(T ) = V .

2. If dimU > dimV then T is not one to one.

Indeed, dimN (T ) = dimU − dimR(T ) ≥ dimU − dimV > 0.

3. If dimU < dimV then T is not onto.

Indeed, dimR(T ) = dimU − dimN (T ) ≤ dimU < dimV .

3.9. Invertible transformations, isomorphisms.

3.9.1. The inverse function. Recall that if f : A → B is a function which
is onto to one and onto, then the function f has an inverse, denoted f−1

defined as f−1 : B → A by f(x) = y ⇔ x = f−1(y).
Recall that the compositions f ◦ f−1 and f−1 ◦ f equal the identity func-

tions:

(f−1 ◦ f)(x) = f−1 (f(x)) = x, (f ◦ f−1)(y) = f
(
f−1(y)

)
= y

Examples:
1) let f : R→ R, f(x) = 5x. Then f−1 : R→ R, f−1(x) = x/5;
2) let g : R→ R, f(x) = x+ 3. Then f−1 : R→ R, f−1(x) = x− 3;
3) let h : (−∞, 0] → [0,∞) by h(x) = x2 then h−1 : [0,∞) → (−∞, 0],
h−1(x) = −

√
x.

3.9.2. The inverse of a linear transformation. Let T : U → V be a linear
transformation between two vector spaces U and V . If T is onto to one and
onto, then the function T has an inverse T−1, T−1 : V → U .

Exercise. Show that the inverse of a linear transformation is also a linear
transformation.

Definition 9. A linear transformation T : U → V which is onto to one and
onto is called an isomorphism of vector spaces, and U and V are called
isomorphic vector spaces.
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Whenever two vector spaces are isomorphic2 and T : U → V is an isomor-
phism, then any property of U that can be written using the vector space
operations of U can be translated, using the isomorphism T , as a translation
machine, into a similar property for V .

The following theorem shows that all the finite dimensional vector spaces
are essentially Rn or Cn:

Theorem 10.
Any vector space over R of dimension n is isomorphic to Rn.
Any vector space over C of dimension n is isomorphic to Cn.

Indeed, let U be a vector space of dimension n over F (where F is R or
C). Let u1, . . . ,un be a basis for U . Define T : U → Fn by T (uj) = ej for
j = 1, . . . n and then extended by linearity to all the vectors in U . Clearly
T is onto, therefore it is also one to one, hence it is an isomorphism. 2

Example.
1. As a vector space, Pn is essentially Rn+1.

3.10. Change of basis, similar matrices. Let T : U → V be a linear
transformation between two finite dimensional vector spaces U and V . Let
BU = {u1, . . . ,un} be a basis of U , and BV = {v1, . . . ,vm} be a basis
of V . Recall (see §3.2) that T is completely determined by the vectors
Tu1, . . . , Tun, and these vectors, in turn, are completely determined by
their expansion in the basis of V :

T (uj) =
m∑
i=1

Mijvi, for some Mij ∈ F, for all j = 1, . . . , n

and the matrix M = [Mij ]i=1,...m,j=1,...n is the matrix representation of the

linear transformation T in the bases BU and BV .
Example. Consider the identity transformation I : U → U, Ix = x. Then

its matrix representation in the bases BU ,BU is the identity matrix I (the
diagonal matrix with 1 on its diagonal).

3.10.1. The matrix representation of a composition is the product of the
matrix representations. We stated without proof Theorem 3(ii):

Proposition 11. Let U, V,W be vector spaces over F (the same for all three
spaces). Let BU = {u1, . . . ,un} be a basis of U , BV = {v1, . . . ,vm} be a
basis of V and BW = {w1, . . . ,wp} be a basis of W .

Let T : U → V and S : V →W be linear transformations. Denote by MT

the matrix representation of T in the basis BU ,BV , and by MS the matrix
representation of S in the basis BV ,BW . Composing the two maps

2The prefix iso- comes from the Greek word isos, which means ”equal”, ”same”. Com-
bined with the Greek word morphos, meaning ”shape”, or ”structure”, then isomorphic”
means ”having the same shape or structure”.
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U
BU

T−→ V
BV

S−→ W
BW

we obtain the linear transformation STv = S(Tv):

U
BU

ST−→ W
BW

Then the matrix representation of ST : U → W in the basis BU ,BW is
the product of the two matrices MSMT :

MST = MSMT

Proof. We have

(13) Tuj =
m∑
i=1

MT,ijvi for all j = 1, . . . , n

and

Svi =

p∑
k=1

MS,kiwk, for all i = 1, . . . ,m

Therefore

(ST )uj = S (Tuj) = S

(
m∑
i=1

MT,ijvi

)
=

m∑
i=1

MT,ij Svi

=
m∑
i=1

MT,ij

(
m∑
k=1

MS,kiwk

)
=

m∑
k=1

(
m∑
i=1

MT,ijMS,ki

)
wk

and noting that the coefficient of wk is the (k, j) entry of the matrix MSMT

the proof is complete. 2

Recall the formula for the product of two matrices A and B: the element
of AB in the position kj is obtained by multiplying elements on line k of A
by elements on column j of B, hence (AB)kj =

∑
iAkiBij .

Exercise. Show that if T : U → V is invertible (recall that necessarily U
and V must have the same dimension), and if MT is its matrix representation
in the basis BU ,BV then the matrix representation of T−1 in the basis BV ,BU
is the inverse of the matrix MT : MT−1 = M−1T .

3.10.2. The transition matrix. Suppose the vector space U has a basis BU =
{u1, . . . ,un}. Let B̃U = {ũ1, . . . , ũn} be another basis of U . Each ũj is a
linear combination of the vectors in BU : there exist scalars Sij so that

(14) ũj =

n∑
i=1

Sijui, for all j = 1, . . . , n
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The matrix S = [Sij ]i,j=1,...,n is called the transition matrix from the basis

BU to the basis B̃U .

Note: S is the matrix of the identity transformation I : U → U , Ix = x
corresponding to basis B̃U on the domain, and BU on the codomain:

(15) U
B̃U

I−→ U
BU

A practical way of calculating the transition matrix when the vectors of
the two bases are specified by giving their coordinates in some common basis
(usually the standard basis of Rn or Cn). Then we can organize each basis
as a matrix, whose columns has the coordinates of the vectors, let us denote
them as

u = [u1 | . . . |un], respectively ũ = [ũ1 | . . . |ũn]

We then have

(16) ũ = uS

which is easy to check by an immediate (and careful) calculation. Indeed,
first note that k’th component of ui is the element uki of the matrix u, and
similarly, k’th component of ũj is the element ũkj of the matrix ũ. Looking
at the k’th component in (14) we see that ũkj =

∑n
i=1 Sijuki which is the

k, j component of the product uS.
From (16) we obtain the practical formula S = u−1 ũ.

The transition matrix from the basis B̃U to the basis BU is, of course, S−1

(why?).

3.10.3. How coordinates of vectors change upon a change of basis. Suppose
a vector x ∈ U has coordinates (x1, . . . , xn)T in the basis BU , i.e. x =∑

j xjuj . What are the coordinates (x̃1, . . . , x̃n)T of x the basis B̃U?

We calculate: x =
∑

j xjuj =
∑

j xj
∑

i S
−1
ij u′i =

∑
i

(∑
j S
−1
ij xj

)
ũi so

x̃i =
∑

j S
−1
ij xj , or, in matrix notation, x̃1

...
x̃m

 = S−1

 x1
...
xm


showing that the coordinates of vectors change by multiplication with the
inverse of the transition matrix: vectors are contravariant.
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3.10.4. How matrices associated to linear transformation change upon chang-
ing bases. Assume we have a linear transformation between two vector
spaces T : U → V and its matrix associated to the bases BU of U and
BV = {v1, . . . ,vm} of V is M :

(17) U
BU

T−→ V
BV

I. We want to find the matrix of T when the basis of U is changed to B̃U .
We can do that by composing (17) with the identity transformation (15):

U
B̃U

I−→ U
BU

T−→ V
BV

giving

(18) U
B̃U

TI−→ V
BV

where, of course, TI = T . By Proposition 11, the matrix of (18) is MS.
II. Suppose now that we want to change the basis of V , to a new basis

B̃V . Denote by R the transition matrix from BV to B̃V , hence R is the
matrix of the identity transformation

V
B̃V

I−→ V
BV

and R−1 is the matrix of the identity transformation in the opposite direction

(19) V
BV

I−→ V
B̃V

and by composition

U
BU

T−→ V
BV

I−→ V
B̃V

we obtain

U
BU

IT−→ V
B̃V

whose matrix is R−1M , which is the matrix of T in the bases BU , B̃V (since
IT = T ).

Combining I. and II. we deduce

Proposition 12. Let T : U → V be a linear transformation whose matrix
representation is M in the bases BU , BV of U , respectively V .

Let B̃U be a basis of U and let S be the transition matrix from BU to B̃U ,
and let B̃V be a basis of V with transition matrix R.

Then the matrix representation of T in the bases B̃U , B̃V is R−1MS.
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3.10.5. Similar matrices. In the particular case when T is a linear transfor-
mation from U to itself: T : U → U , T is called an endomorphism3 of U . Let
M be the matrix representation of T in the basis BU of U (the same basis
for the domain and the codomain). Suppose we want to change the basis

to B̃U . Then the matrix representation of T in the basis B̃U is S−1MS, by
Proposition 12.

Definition 13. Two square matrices N,M are called similar if there exists
an invertible matrix S so that N = S−1MS.

As seen above, similar matrices represent the same linear trans-
formation (endomorphism), but in different bases.

3.11. Gauss elimination. This section brings to light the fact that the
allowed transformations in Gauss elimination method correspond to changes
of bases.

Suppose we need to solve a linear system Mx = b; say M is an m × n
matrix, and b is an m-dimensional vector. If G is an invertible m × m
matrix, then our system is equivalent to the system GMx = Gb (in the
sense that the two systems have the same solutions).

We can multiply by G separately M , and b, or we can work with the
augmented matrix Maug = [M |b], it is the same thing, since

GMaug = G[M |b] = [GM |Gb]

Viewing M as the matrix of a linear transformation Fn → Fm (corre-
sponding to the standard bases) then GM is the matrix of the same linear
transformation with respect to a new basis on Rm having the matrix of
change of basis equal to S = G−1.

Here are the allowed operations in Gauss elimination and the correspond-
ing change of basis.

3.11.1. Swapping two rows of a matrix. This operation corresponds to ex-
changing the place of two vectors in the basis. For example, say we have a
linear transformation whose matrix in the standard basis e1, e2, e3 is

M =

 a1 a2 a3

b1 b2 b3

c1 c2 c3


Swapping its first two rows means writing the linear transformation in the
basis of the codomain where the first two vectors are swapped, namely

3Linear transformations preserve the structure of vector spaces in the sense that they
take sums to sums, and scalar multiples to scalar multiples, hence they are ”vector spaces
morphisms”. The prefix endo comes from the Greek word endon, meaning ”within”.
Endomorphisms are, therefore, morphisms from a space into itself.
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e2, e1, e3. (The basis of the domain remains the same.) The matrix of
change of basis is, of course,

E12 =

 0 1 0

1 0 0

0 0 1


and noting that E−112 = E12 (swapping two vectors twice returns them to
the original position), the matrix in the new basis is

E12M =

 b1 b2 b3
a1 a2 a3

c1 c2 c3


3.11.2. Multiplying a row by a non-zero number. Suppose we want to muli-
tiply the second row by the scalar t. This corresponds to changing the basis
(of the target space) to e1,

1
t e2, e3, with the matrix of change of basis

S =

 1 0 0

0 1
t 0

0 0 1

 , with G2(t) = S−1 =

 1 0 0

0 t 0

0 0 1


we have

G2(t)M =

 a1 a2 a3

tb1 tb2 tb3

c1 c2 c3


3.11.3. Adding to one row a scalar multiple of another row. This happens
when the new basis consists on adding to one vector a scalar multiple of
another. For example, if the new basis is e1−α e2, e2, e3 (check that this is
a basis indeed!) the matrix of change of basis is

F1,2(−α) =

 1 −α 0

0 1 0

0 0 1


then F1,2(−α)−1 = F1,2(α) (which is obvious by thinking of the reverse
change of basis) and

F1,2(α)M =

 a1 + α b1 a2 + α b2 a3 + α b3

b1 b2 b3

c1 c2 c3
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3.11.4. Gauss elimination is achieved by a composition of the three types of
matrices. We will illustrate this on the example (8) and its usage to solving
the system of §(3.7.1).

Consider the linear system with the augmented matrix (10). The aim is
to multiply M to the left by an invertible matrix G, so that GM is upper
triangular.

We scan the first column, from top to bottom, until we find the first
nonzero element. In our example this is 2. Aiming to make all the element
below it equal to zero, we multiply Maug by F21(−3

2) obtaining

F21(−
3

2
)Maug =


1 0 0 0

−3/2 1 0 0

0 0 1 0

0 0 0 1

Maug =


2 0 2 2β

0 −2 2 −3β + α

1 1 0 0

4 3 1 β


To make the lower column terms zero we further multiply by

F31(−
1

2
) =


1 0 0 0

0 1 0 0

−1/2 0 1 0

0 0 0 1

 , F41(−2) =


1 0 0 0

0 1 0 0

0 0 1 0

−2 0 0 1


and we obtain

F41(−2)F31(−
1

2
)F21(−

3

2
)Maug =


2 0 2 2β

0 −2 2 −3β + α

0 1 −1 −β
0 3 −3 −3β

 := M1

For the second column we next multiply F42(
3
2)F32(

1
2)M1:

1 0 0 0

0 1 0 0

0 0 1 0

0 3
2 0 1




1 0 0 0

0 1 0 0

0 1
2 1 0

0 0 0 1

 M1 =


2 0 2 2β

0 −2 2 −3β + α

0 0 0 −5
2 β + 1

2 α

0 0 0 −15
2 β + 3

2 α


which is a matrix upper triangular. In this basis it is easy to see when the
system is soluble: the last column belongs to the span of the previous ones
if and only if the last two coordinates are zero, hence α = 5β.

For this α the system has the augmented matrix
2 0 2 2β

0 −2 2 2β

0 0 0 0

0 0 0 0
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and can be easily be solved, yielding (11).

3.12. Projections, symmetries, rotations. We will now see a few fun-
damental examples of linear transformation: projections, symmetries, rota-
tions.

3.12.1. Projections. An example of (orthogonal) projection in the x1x2-
plane, is the projection on the x1 line. It is defined as P0 : R2 → R2

by P0(x1, x2) = (x1, 0). This is a linear transformation (check!) and to
find its matrix in the standard basis note that P0(e1) = e1 and P0(e2) = 0
therefore

AP0 =

[
1 0
0 0

]
and P0(x) = AP0x (matrix AP0 times vector x).

As an example of (orthogonal) projection in space, let Q : R3 → R3 be
the projection on the x1x2-plane: Q(x1, x2, x2) = (x1, x2, 0).

Exercise. Check that P 2 = P and Q2 = Q (recall that by P 2 we mean
P ◦ P ). Find the matrix of Q in the standard basis.

Square matrices satisfying M2 = M could also be oblique projections (for
example, the shadow cast by an object on the surface of the Earth is an
oblique projection. Orthogonal projections satisfy one more property...but
first we need to define what we mean by orthogonality.

3.12.2. Rotations. Consider the transformation of the plane which rotates
points by and angle θ counterclockwise around the origin. The simplest way
to deduce the formula for this transformation is to consider the plane as the
complex plane C, where rotation by angle θ is achieved by multiplication
with exp(iθ): let L : C→ C, defined by L(z) = eiθz.

Now we only need to convert to real coordinates: if z = x1 + ix2 then

eiθz = (cos θ + i sin θ)(x1 + ix2) = (cos θx1 − sin θx2) + i(sin θx1 + cos θx2)

therefore define the rotation Rθ : R2 → R2 by Rθ(x1, x2) = ((cos θx1 −
sin θx2), (sin θx1 + cos θx2)) whose matrix in the standard basis is (check!)

ARθ =

[
cos θ − sin θ
sin θ cos θ

]
and the rotation is the map

R

([
x1
x2

])
=

[
cos θ − sin θ
sin θ cos θ

] [
x1
x2

]
Remarks:

(i) Rθ1Rθ2 = Rθ1+θ2 for any θ1,2
(ii) Rθ is invertible, and (Rθ)

−1 = R−θ.
(iii) detARθ = 1.
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3.12.3. Projections on other lines in R2. Consider the orthogonal projection
Pθ : R2 → R2 on the line x2 = tan θ x1. We can obtain its formula using P0

and changes of coordinates.
We rotate the x-plane by an angle −θ, thus taking the projection line on

the x1-axis, then project using P0, and then rotate back. We obtain the
projection Pθ as the composition: Pθ = RθP0R−θ.

Aa an alternative approach, we can think in terms of changes of coor-
dinates. Let ẽ1 = Rθe1 and ẽ2 = Rθe2 (then ẽ1 is a unit vector on the
line x2 = tan θ x1). In coordinates ẽ1, ẽ2 the projection Pθ has the simple
formula Pθ(c1ẽ1+c2ẽ2) = c1ẽ1 having the matrix AP0 (as it is clear from the
geometry of the problem). We now need to write Pθ in standard coordinates
e1, e2:

R2

e1,2

I−→ R2

ẽ1,2

Pθ−→ R2

ẽ1,2

I−→ R2

e1,2

hence the matrix of Pθ in the standard basis of R2 is APθ = ARθAP0AR−θ .

3.12.4. Reflexions. The reflexion of the plane about its x1-axis: T0 : R2 →
R2 is obviously given by T0(x1, x2) = (x1,−x2), and its matrix representa-
tion in the standard basis is

AT0 =

[
1 0
0 −1

]
Now suppose we want to write the formula for the reflexion Tθ : R2 → R2

about a line of slope θ (with equation x2 = tan θ x1. We can obtain his
by composition of the simpler transformations we wrote before as follows:
rotate the domain of Tθ by an angle −θ; this will take the line into the
x1-axis, we then apply the reflexion T , then we go back to the original
coordinates by a rotation of angle θ. This gives Tθ = RθT0R−θ = RθT0R

−1
θ .

Exercises.
1) Write the matrix associated to Tθ in the canonical basis.
2) Use the result above to write the matrix associated to a reflexion about

the x2 axis in the canonical basis and check the results using geometrical
arguments.

3) Use composition of transformations to find the formula for the orthog-
onal projection of the plane onto a line x1 = mx2 and check your result
geometrically.

4) Use calculations, then check geometrically that reflexions and rotations
in the plane almost commute: RθT0 = T0R−θ.

5) Show that the product of two reflexions in the plane is a rotation.

3.13. Summary of some properties of n dimensional vector spaces.
The following hold for an n-dimensional vector space V . (We assume n > 0.)

Theorem. Any linearly independent set of vectors can be completed to
a basis.

As a consequence of this theorem (proved earlier):
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• Any set of n+ 1 or more vectors in V are linearly dependent.
• Any set of n linearly independent vectors in V is a basis for V .
Theorem. Any spanning set of V contains a basis of V .
Proof. Consider a spanning set: Sp(v1, . . . ,vp) = V .
Step 1. If 0 is among the vectors vj , then we remove it, and the remaining

set is still a spanning set.
Step 2. If v1, . . . ,vp ∈ V are linearly independent, then they form a basis

of V , and the claim is proved.
Otherwise, there exists a linear relation c1v1 + . . . + cpvp = 0 with not

all scalars cj equal to zero. Say cp 6= 0. Then vp is a linear combination of
v1, . . . ,vp−1 and therefore Sp(v1, . . . ,vp) = Sp(v1, . . . ,vp−1) = V , and we
now have a spanning set with p− 1 element.

Continue with Step 1. The procedure ends with a basis of V . (It cannot
end with the zero vector, since this means that dimV = 0.) 2

As a consequence of this theorem:
• Any set of n vectors in V which span V is a basis for V .
• Any spanning set for V must contain at least n vectors.

3.14. Left inverse, right inverse of functions and of matrices.

3.14.1. Inverses for functions. Let f : D → F be a function defined on a
set D (the domain of F ) with values in a set F (the codomain of f).

If f is one to one and onto, then there exists the inverse function f−1 :
F → D, which satisfies:
(i) f−1(f(x)) = x for all x ∈ D, in other words, f−1 ◦ f = Id where Id is
the identity function of D (Id : D → D, Id(x) = x), and
(i) f(f−1(x)) = x for all x ∈ F , in other words, f ◦ f−1 = Id where Id is
the identity function of F (Id : F → F, Id(x) = x).
(We should normally write IdD, IdF for the identity of D, respectively, F .)

In other words, f−1 is the inverse of f with respect to composition. Com-
position of functions is not commutative (f ◦g 6= g◦f) so in order to conclude
that f−1 is the inverse of F then both relations f−1 ◦ f = Id, f ◦ f−1 = Id
must be satisfied.

If f−1 ◦ f = Id then we say that f−1 is a left inverse of f .
If f ◦ f−1 = Id then we say that f−1 is a right inverse of f .
It is not hard to see that:
1) f in one to one if and only if f has a left inverse;
2) f is onto if and only if f has a right inverse.
If f is not invertible, then these one-sided inverses are not unique.
In what follows we will prove these results and construct one-sided inverses

for linear transformations and matrices.

3.14.2. Left inverse. Let T : U → V be a linear transformation.
T has a left inverse =⇒ T is one to one.
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Indeed, assume there is L : V → U so that L(T (u)) = u for all u ∈ U . If
u ∈ N (T ) then Tu = 0. But u = L(T (u)) = L(0) = 0 so u = 0 and T is
one to one.

Conversely, T is one to one =⇒ T has a left inverse.
Let T be one to one. If it is also onto, then we can take L to be the

inverse of T , and the problem is solved.
Otherwise, split V as V = R(T )

⊕
W where W is a complement of R(T ).

Any v ∈ V can be uniquely written as v = y+w with y ∈ R(T ) and w ∈W
(by Remark 22 of § 1.7). There is a unique u ∈ U so that y = Tu (since T
is 1-to-1). Define Lv = u and we can check that LTu = u.

Note that we can as well define Lv = u +L0w where L0 : W → U is any
linear transformation.

Now formulate this result in the language of matrices. Let M be an m×n
matrix, and consider T : Rn → Rm defined by Tx = Mx. The assumption
that T is one to one means that the columns of M are linearly independent,
hence n ≤ m and rankM = n (by Theorem 7 (iii)), therefore:

Theorem 14. Let M be m× n matrix with n ≤ m.
M has rank n (maximal rank) if and only if M has a left inverse: an

n×m matrix L so that LM = I.
If n = m then L = M−1, while if n 6= m then L is not unique.

3.14.3. Right inverse. Let T : U → V be a linear transformation.
T has a right inverse =⇒ T is onto.
Indeed, there is R : V → U so that T (R(v)) = v for all v ∈ V . Therefore

any v ∈ V is v = Tx for x = Rv, so T is onto.
Conversely, T is onto =⇒ T has a right inverse.
Let T be onto. If T is also one to one, then we can take R to be the

inverse of T .
Otherwise, we want to define Rv = u where u is so that Tu = v, the

problem is that there are many such u, as any vector in u + N (T ) works
as well (and we cannot choose arbitrarily, since we want a linear transfor-
mation). To attain a linear ”choice”, split U = N (T ) ⊕W where W is a
complement. For any v ∈ V let u be such that Tu = v. Write u = uN +uW
(note that uW depends linearly on u, it is a projection, usually oblique) and
define Rv = uW .

In the language of matrices: let M be an m × n matrix, and consider
T : Rn → Rm defined by T (x) = Mx. The assumption that T is onto means
that n ≥ m and that the column space Sp(Me1, . . . ,Men) = Rm, which
means that rankM = m.

Theorem 15. Let M be an m× n matrix with n ≥ m.
M has maximal rank m if and only if M has a right inverse: an m × n

matrix R so that MR = I.


