Some review questions

1. True or false? If true, justify, if false, give a counterexample.
(a) A unitary matrix is always diagonalizable.
(b) A square matrix with all eigenvalues real is always diagonalizable.
(c) A square matrix which is not symmetric is not diagonalizable.
(d) A square matrix which is diagonalizable by a unitary transformation must be normal.
2. True or false? If true, justify, if false, give a counterexample.
(a) Any matrix is similar to a diagonal matrix.
(b) Any square matrix is unitarily similar to a triangular matrix.
(c) Any non-singular square matrix can be written as a product of a unitary and a positive definite self adjoint matrix.
(d) Any symmetric positive definite matrix has a square root.
(e) Self-adjoint matrices are invertible.
3. If N is a normal matrix, then which of the following are correct?
(a) $N=N^{*}$
(b) $N=\left(N^{*}\right)^{-1}$
(c) N is diagonalizable.
(d) N has only real eigenvalues.
(e) All the powers of N are normal.
(f) $N^{*} N$ is selfadjoint.
(g) None of the above is correct.
4. If A is a (real) symmetric matrix, then which of the following are correct? (a) A is normal.
(b) If A is orthogonal, then its eigenvalues can only be 1 or -1 .
(c) $1-3 i$ cannot be an eigenvalue of A.
(d) $A A^{T}$ is always positive semidefinite.
(e) None of the above is correct.
5. True or False? Give the reason if true or give a counterexample if false.
(a) For every square matrix M there is a unique solution to $\frac{d u}{d t}=M u$ with the initial condition $u_{0}=(1, \ldots, 1)^{T}$.
(b) Every invertible matrix can be diagonalized.
(c) Every diagonalizable matrix can be inverted.
(d) The eigenvalues of M^{*} are the complex conjugates of the eigenvalues of M.
(e) If the eigenvectors \mathbf{v} and \mathbf{y} correspond to distinct eigenvalues, then $\langle\mathbf{v}, \mathbf{y}\rangle=0$.
