Some review problems

1. Find the maximum of the expression $\frac{5 x^{2}-2 x z+2 y^{2}+5 z^{2}}{x^{2}+y^{2}+z^{2}}$ when (x, y, z) take all the real values except for $(0,0,0)$.
2. Find the singular value decomposition and the Moore-Penrose pseudoinverse of the matrix

$$
M=\left[\begin{array}{ll}
a & 0 \\
1 & 0 \\
0 & 1
\end{array}\right]
$$

The last page of the exam will contain the SVD theorem as showed on the web site.
3. Consider the system $M \mathbf{x}=\mathbf{b}$ where

$$
M=\left[\begin{array}{llll}
1 & 2 & 0 & 3 \\
0 & 0 & 0 & 0 \\
2 & 4 & 0 & 1
\end{array}\right], \quad \mathbf{b}=\left[\begin{array}{l}
b_{1} \\
b_{2} \\
b_{3}
\end{array}\right]
$$

(a) Find all the vectors \mathbf{b} for which the system is solvable.
(b) Assuming the system $M \mathbf{x}=\mathbf{b}$ is solvable, find its general solution.
(c) Find a basis for the column space of M.
(d) What is the rank of M^{T} ? Justify.
4. Let M be a rectangular $m \times n$ matrix, with complex entries.
(a) What is the dimension of $M M^{*}$?
(b) Show that $M M^{*}$ is self-adjoint.
(c) Show that $M M^{*}$ is positive semi-definite.
(d) What can we say for sure about the eigenvalues of $M M^{*}$?
(e) Is $M M^{*}$ always diagonalizable?

