
Exercise:
1. Show that any n’th root of 1 (that is, a number z so that zn = 1) has the form

exp(2πki/n) for k integer.
2. Denote a = exp(2πi/n). Show that 1, a, a2, ..., an−1 are all the roots of 1 (that is,

there are n of them, and no more).
3. Show that the number a above satisfies 1 + a+ a2 + ...+ an−1 = 0
4. Plot, on separate planes, the roots of 1 for n = 2. Then for n = 3, then n = 4. Then

n = 5. What do you see?

Solution:
There probably are many ways to solve this, here is my favorite (with some good review

items, too).
Recall the polar form of complex numbers: z = |z|eiθ.
Recall: ex+iy = ex(cos y + i sin y). Therefore e2kπi = 1 for all k ∈ Z, and, conversely, if

ex+iy = 1 then x = 0, y = 2kπ for some k ∈ Z.

1. Let z ∈ C so that zn = 1. Take the magnitude on both sides, it follows that |z|n = 1
so |z| = 1. Therefore z = eiθ for some real number θ. Then zn = einθ = 1 means that
nθ = 2kπ for some k ∈ Z, hence θ = 2kπ/n.

2. 1, a, a2, ..., an−1 are the numbers e2kπ/n for k = 0, 1, . . . n− 1.
We have an = exp(2πi) = 1. The other powers: they satisfy (ak)n = (an)k = 1k = 1 so

they are all roots of 1.
For all other k the numbers repeat themselves: an = 1, an+1 = ana = a etc. More

formally:
– for higher k: say k = Nn + j for some integer j > 0. Then e2kπ/n = e2(Nn+j)π/n =

e2jπ/n, the numbers start repeating.
- for negative k: add N multiples of n until Nn+ k ∈ {0, 1, . . . , n− 1} and repeat the

argument above. (What is this magic number N? Divide k/n = N + (remainder)/n.)

3.Recall the factorization formula 1− xn = (1− x)(1 + x+ x2 + . . .+ xn−1).
We have an = 1. So an − 1 = (a − 1)(1 + a + a2 + . . . + an−1) = 0. Since a 6= 1 then

1 + a+ a2 + . . .+ an−1 = 0.

4. n = 2: two points, 1,−1, symmetric about O.
n = 3: equilateral triangle, with one vertex at 1.
n = 4: 1, i,−1,−i square with one vertex at 1.
n = 5: a regular (why?) pentagon with one vertex at 1.
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