Exercise:

1. Show that any n 'th root of 1 (that is, a number z so that $z^{n}=1$) has the form $\exp (2 \pi k i / n)$ for k integer.
2. Denote $a=\exp (2 \pi i / n)$. Show that $1, a, a^{2}, \ldots, a^{n-1}$ are all the roots of 1 (that is, there are n of them, and no more).
3. Show that the number a above satisfies $1+a+a^{2}+\ldots+a^{n-1}=0$
4. Plot, on separate planes, the roots of 1 for $n=2$. Then for $n=3$, then $n=4$. Then $n=5$. What do you see?

Solution:

There probably are many ways to solve this, here is my favorite (with some good review items, too).

Recall the polar form of complex numbers: $z=|z| e^{i \theta}$.
Recall: $e^{x+i y}=e^{x}(\cos y+i \sin y)$. Therefore $e^{2 k \pi i}=1$ for all $k \in \mathbb{Z}$, and, conversely, if $e^{x+i y}=1$ then $x=0, y=2 k \pi$ for some $k \in \mathbb{Z}$.

1. Let $z \in \mathbb{C}$ so that $z^{n}=1$. Take the magnitude on both sides, it follows that $|z|^{n}=1$ so $|z|=1$. Therefore $z=e^{i \theta}$ for some real number θ. Then $z^{n}=e^{i n \theta}=1$ means that $n \theta=2 k \pi$ for some $k \in \mathbb{Z}$, hence $\theta=2 k \pi / n$.
2. $1, a, a^{2}, \ldots, a^{n-1}$ are the numbers $e^{2 k \pi / n}$ for $k=0,1, \ldots n-1$.

We have $a^{n}=\exp (2 \pi i)=1$. The other powers: they satisfy $\left(a^{k}\right)^{n}=\left(a^{n}\right)^{k}=1^{k}=1$ so they are all roots of 1 .

For all other k the numbers repeat themselves: $a^{n}=1, a^{n+1}=a^{n} a=a$ etc. More formally:

- for higher k : say $k=N n+j$ for some integer $j \geqslant 0$. Then $e^{2 k \pi / n}=e^{2(N n+j) \pi / n}=$ $e^{2 j \pi / n}$, the numbers start repeating.
- for negative k : add N multiples of n until $N n+k \in\{0,1, \ldots, n-1\}$ and repeat the argument above. (What is this magic number N ? Divide $k / n=N+$ (remainder) $/ n$.)

3. Recall the factorization formula $1-x^{n}=(1-x)\left(1+x+x^{2}+\ldots+x^{n-1}\right)$.

We have $a^{n}=1$. So $a^{n}-1=(a-1)\left(1+a+a^{2}+\ldots+a^{n-1}\right)=0$. Since $a \neq 1$ then $1+a+a^{2}+\ldots+a^{n-1}=0$.
4. $n=2$: two points, $1,-1$, symmetric about O .
$n=3$: equilateral triangle, with one vertex at 1 .
$n=4: 1, i,-1,-i$ square with one vertex at 1 .
$n=5$: a regular (why?) pentagon with one vertex at 1 .

