RECTIFIABLE CURVES

1. DISCUSSION OF THE DEFINITION

Assume that the curve C is given by the graph of g, C = g([a,b]) Given a partition
{to,...,ts} of [a,b], the length of a polygonal path through C' is

J
(1) Lp(C) = lg(t;) — gtj-—1)|

1
Since a straight line gives the shortest distance between two points, the length of C, if
it exists, is always larger than Lp(C). Note that Lp is increasing in P: if P D Pisa
subpartition of P then, by the triangle inequality (think of the finer polygon), Lp(C) <
Lp/(C). Thus, the sup over all partitions L(C) is in a good sense the limit of Lp when
the partition becomes finer and finer and it is natural to call L(C) the length of C.

2. WHEN ARE CURVES RECTIFIABLE?

Let f be a scalar function defined on [a, b]. Its total variation is defined very similarly

to L(C):

J
(2) Vb“(f):SngIf(xj)—f(:rj—l)l <oo

where P are partitions of [a, b]. The space of functions of bounded variation BV is defined
as the space of functions for which V;*(f) is finite:

3) feBV(la,b]) < V'(f) <+o0

These notions were introduced by Camille Jordan (the same who introduced what we now
call the Jordan measure).

Note 1. If g = (g1, ..., gn) it is easy to see that g is rectifiable on [a, ] iff g; € BV ([a,b])
for eachi=1,2,...,n.

This is because of the equivalence of Euclidian norms, (1.3) on p.6 in the text. Note
that V;*(g:) is the length of the graph of g; on [a,b]. It is known that functions in BV
are differentiable almost everywhere (that is, except perhaps on a set of zero Lebesgue
measure).

If |g’| is continuous, the construction of its Riemann integral is closely related to that
of L(C), and the proof below follows this connection.

Exercise 2 (Finite differences versus derivatives). Consider the function

gly) —gl@) .
(4) hy) ={ y—a & 157V
g'(x); ifz=y

Show that h(z,y) = fol g (tx + (1 — t)y)dt. Use this to show that h is continuous in
(fL',y) € [a, b}2



2 RECTIFIABLE CURVES

3. THE LENGTH FORMULA WHEN g € C*
Theorem 3. If g be C' on (a',¥') D [a,b], then L(C) exists and equals fab lg’ (t)]|dt.

Note 4. Using the exercise, the idea is completely straightforward: with m; the minimum
point of g between t;_1 and t; we can write

(5) g(t;) — g(ti-1) = g'(m;)(t; — tj—1) +¢;(t; — tj-1)
where €; is uniformly small on [a,b]. Thus for a fine enough partition P, Lp(C) is arbi-

trarily close to the lower Riemann sum sp(|g’|) (we could have equally well worked with
the maximum point M; and the upper sum Sp).

Proof of the theorem. The proof merely consists of writing down the details in the note
carefully.
Since |g’| is continuous, it is integrable on [a, b] and there is a partition P’ s.t.

b b
5ol — [ g @l =| 3 1g/ml - [ 1g/0lar] <
@ 1<’ @

Since [a,b]? is compact, by the exercise above h is uniformly continuous on [a, b]*.
Thus for any € there is a § such that |(z,y) — (z/,¥")| < § = |h(z,y) — h(@’,y’)| < e In
particular,

(6) |(@,y) = (2,9))] <& = [h(z,y) — g'(2)] <e

Choose any partition P and take a refinement, if necessary, to arrange that ¢;—t;_1 < 4.
For each j, choose m; € [tj—1,t;] to be the point where |g'(m;)| is minimum. For any
partition P” finer than both, P” > P, P” D P’, we then have ‘8pfl(|g'\) —f: g’ (t)|dt| < e.
(Review the notions if you forgot them.) By @ and the choice of P’,

(7) g(t;) —g(ti—1) — 8'(m;)(t; —tj—1) = €;(t; —t;-1); where |¢j| <e
Thus, by summing,

(8)
Lp(C) < Lpn(C)= > lglty) —gt-0)l= > I8/ (m)l(t; —t;-1) +€(b—a)

1<<d”! 1<<d”

b
=spin(lg]) +€(b—a)= / g’ (t)|dt + € + €' (b—a); where |€],|€"] < ¢

Since P was arbitrary and we can take e arbitrarily small, it follows immediately from
these inequalities that

b
(9) L(©) = sup Lr(C) = / & ()| dt
i
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