RECTIFIABLE CURVES

1. Discussion of the definition

Assume that the curve C is given by the graph of \mathbf{g} , $C = \mathbf{g}([a, b])$ Given a partition $\{t_0, ..., t_J\}$ of [a, b], the length of a polygonal path through C is

(1)
$$L_P(C) = \sum_{1}^{J} |\mathbf{g}(t_j) - \mathbf{g}(t_{j-1})|$$

Since a straight line gives the shortest distance between two points, the length of C, if it exists, is always larger than $L_P(C)$. Note that L_P is increasing in P: if $P' \supset P$ is a subpartition of P then, by the triangle inequality (think of the finer polygon), $L_P(C) \leq L_{P'}(C)$. Thus, the sup over all partitions L(C) is in a good sense the limit of L_P when the partition becomes finer and finer and it is natural to call L(C) the length of C.

2. When are curves rectifiable?

Let f be a scalar function defined on [a,b]. Its total variation is defined very similarly to L(C):

(2)
$$V_b^a(f) = \sup_{P} \sum_{1}^{J} |f(x_j) - f(x_{j-1})| < \infty$$

where P are partitions of [a,b]. The space of functions of bounded variation BV is defined as the space of functions for which $V_b^a(f)$ is finite:

(3)
$$f \in BV([a,b]) \iff V_b^a(f) < +\infty$$

These notions were introduced by Camille Jordan (the same who introduced what we now call the Jordan measure).

Note 1. If $\mathbf{g} = (g_1, ..., g_n)$ it is easy to see that \mathbf{g} is rectifiable on [a, b] iff $g_i \in BV([a, b])$ for each i = 1, 2, ..., n.

This is because of the equivalence of Euclidian norms, (1.3) on p.6 in the text. Note that $V_b^a(g_i)$ is the length of the graph of g_i on [a, b]. It is known that functions in BV are differentiable almost everywhere (that is, except perhaps on a set of zero Lebesgue measure).

If $|\mathbf{g}'|$ is continuous, the construction of its Riemann integral is closely related to that of L(C), and the proof below follows this connection.

Exercise 2 (Finite differences versus derivatives). Consider the function

(4)
$$\mathbf{h}(x,y) = \begin{cases} \frac{\mathbf{g}(y) - \mathbf{g}(x)}{y - x}; & \text{if } x \neq y \\ \mathbf{g}'(x); & \text{if } x = y \end{cases}$$

Show that $\mathbf{h}(x,y) = \int_0^1 \mathbf{g}'(tx + (1-t)y)dt$. Use this to show that \mathbf{h} is continuous in $(x,y) \in [a,b]^2$.

3. The length formula when $\mathbf{g} \in C^1$

Theorem 3. If \mathbf{g} be C^1 on $(a',b') \supset [a,b]$, then L(C) exists and equals $\int_a^b |\mathbf{g}'(t)| dt$.

Note 4. Using the exercise, the idea is completely straightforward: with m_j the minimum point of **g** between t_{j-1} and t_j we can write

(5)
$$\mathbf{g}(t_j) - \mathbf{g}(t_{j-1}) = \mathbf{g}'(m_j)(t_j - t_{j-1}) + \epsilon_j(t_j - t_{j-1})$$

where ϵ_j is uniformly small on [a, b]. Thus for a fine enough partition P, $L_P(C)$ is arbitrarily close to the lower Riemann sum $s_P(|\mathbf{g}'|)$ (we could have equally well worked with the maximum point M_j and the upper sum S_P).

Proof of the theorem. The proof merely consists of writing down the details in the note carefully.

Since $|\mathbf{g}'|$ is continuous, it is integrable on [a, b] and there is a partition P' s.t.

$$\left| s_{P'}(|\mathbf{g}'|) - \int_a^b |\mathbf{g}'(t)|dt \right| = \left| \sum_{1 \le i \le J'} |\mathbf{g}'(m_j)| - \int_a^b |\mathbf{g}'(t)|dt \right| < \epsilon$$

Since $[a,b]^2$ is compact, by the exercise above **h** is uniformly continuous on $[a,b]^2$. Thus for any ϵ there is a δ such that $|(x,y)-(x',y')|<\delta\Rightarrow |\mathbf{h}(x,y)-\mathbf{h}(x',y')|<\epsilon$. In particular,

(6)
$$|(x,y) - (x,y')| < \delta \Rightarrow |\mathbf{h}(x,y) - \mathbf{g}'(x)| < \epsilon$$

Choose any partition P and take a refinement, if necessary, to arrange that $t_j - t_{j-1} < \delta$. For each j, choose $m_j \in [t_{j-1}, t_j]$ to be the point where $|\mathbf{g}'(m_j)|$ is minimum. For any partition P'' finer than both, $P'' \supset P, P'' \supset P'$, we then have $\left|s_{P''}(|\mathbf{g}'|) - \int_a^b |\mathbf{g}'(t)| dt\right| < \epsilon$. (Review the notions if you forgot them.) By (6) and the choice of P',

(7)
$$\mathbf{g}(t_j) - \mathbf{g}(t_{j-1}) - \mathbf{g}'(m_j)(t_j - t_{j-1}) = \epsilon_j(t_j - t_{j-1});$$
 where $|\epsilon_j| < \epsilon$ Thus, by summing,

$$L_{P}(C) \leq L_{P''}(C) = \sum_{1 \leq j \leq J''} |\mathbf{g}(t_{j}) - \mathbf{g}(t_{j-1})| = \sum_{1 \leq j \leq J''} |\mathbf{g}'(m_{j})| (t_{j} - t_{j-1}) + \epsilon'(b - a)$$

$$= s_{P''}(|\mathbf{g}'|) + \epsilon'(b - a) = \int_{a}^{b} |\mathbf{g}'(t)| dt + \epsilon'' + \epsilon'(b - a); \text{ where } |\epsilon'|, |\epsilon''| < \epsilon$$

Since P was arbitrary and we can take ϵ arbitrarily small, it follows immediately from these inequalities that

(9)
$$L(C) = \sup_{P} L_P(C) = \int_a^b |\mathbf{g}'(t)| dt$$