Chapter 10: Partial differential equations.

§10.1: Two-point boundary value problems

A second order linear homogeneous differential equation

$$
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=0
$$

A second order linear homogeneous differential equation

$$
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=0
$$

has two linearly independent solutions, y_{1} and y_{2}, and the general solution is then $c_{1} y_{1}+c_{2} y_{2}$, with c_{1}, c_{2} arbitrary.

A second order linear homogeneous differential equation

$$
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=0
$$

has two linearly independent solutions, y_{1} and y_{2}, and the general solution is then $c_{1} y_{1}+c_{2} y_{2}$, with c_{1}, c_{2} arbitrary. To determine c_{1} and c_{2} we imposed initial conditions, such as $y(0)=a, y^{\prime}(0)=b$.

A second order linear homogeneous differential equation

$$
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=0
$$

has two linearly independent solutions, y_{1} and y_{2}, and the general solution is then $c_{1} y_{1}+c_{2} y_{2}$, with c_{1}, c_{2} arbitrary. To determine c_{1} and c_{2} we imposed initial conditions, such as $y(0)=a, y^{\prime}(0)=b$.

Alternatively, any two conditions could, we may think, determine the solution.

A second order linear homogeneous differential equation

$$
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=0
$$

has two linearly independent solutions, y_{1} and y_{2}, and the general solution is then $c_{1} y_{1}+c_{2} y_{2}$, with c_{1}, c_{2} arbitrary. To determine c_{1} and c_{2} we imposed initial conditions, such as $y(0)=a, y^{\prime}(0)=b$.

Alternatively, any two conditions could, we may think, determine the solution. For instance we can give $y(0)$ and $y(1)$ or $y(0)$ and $y^{\prime}(1)$ etc.

A second order linear homogeneous differential equation

$$
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=0
$$

has two linearly independent solutions, y_{1} and y_{2}, and the general solution is then $c_{1} y_{1}+c_{2} y_{2}$, with c_{1}, c_{2} arbitrary. To determine c_{1} and c_{2} we imposed initial conditions, such as $y(0)=a, y^{\prime}(0)=b$.

Alternatively, any two conditions could, we may think, determine the solution. For instance we can give $y(0)$ and $y(1)$ or $y(0)$ and $y^{\prime}(1)$ etc. Such conditions are called two-point boundary conditions.

We need to analyze two-point boundary problems since they are needed in solving partial differential equations.

We need to analyze two-point boundary problems since they are needed in solving partial differential equations. Partial differential equations can sometimes be reduced to infinitely many two-point boundary problems for ODEs. ODEs are vastly simpler than PDEs.

We need to analyze two-point boundary problems since they are needed in solving partial differential equations. Partial differential equations can sometimes be reduced to infinitely many two-point boundary problems for ODEs. ODEs are vastly simpler than PDEs.

A general two-point boundary problem is of the form

$$
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=g(x)
$$

We need to analyze two-point boundary problems since they are needed in solving partial differential equations. Partial differential equations can sometimes be reduced to infinitely many two-point boundary problems for ODEs. ODEs are vastly simpler than PDEs.

A general two-point boundary problem is of the form

$$
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=g(x)
$$

together with values of the function or its derivative at two different points.

We need to analyze two-point boundary problems since they are needed in solving partial differential equations. Partial differential equations can sometimes be reduced to infinitely many two-point boundary problems for ODEs. ODEs are vastly simpler than PDEs.

A general two-point boundary problem is of the form

$$
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=g(x)
$$

together with values of the function or its derivative at two different points.

If g is zero and the boundary values are zero, then the problem is called homogeneous, otherwise it is called nonhomogeneous.

There is an analogy with linear algebra:

There is an analogy with linear algebra: The nonhomogeneous equation $A \mathbf{x}=\mathbf{b}$ where \mathbf{x}, \mathbf{b} are vectors and A is a matrix, has always a solution, if the $\operatorname{det} A \neq 0$

There is an analogy with linear algebra: The nonhomogeneous equation $A \mathbf{x}=\mathbf{b}$ where \mathbf{x}, \mathbf{b} are vectors and A is a matrix, has always a solution, if the $\operatorname{det} A \neq 0$ which also means that $A \mathbf{x}=0$ only has $\mathbf{x}=0$ for solution.

Something similar is true for 2-pt boundary value problems:

Something similar is true for 2-pt boundary value problems: the nonhomogeneous equation has a solution if and only if the homogeneous one only has zero for solutions.

Something similar is true for 2-pt boundary value problems: the nonhomogeneous equation has a solution if and only if the homogeneous one only has zero for solutions.

Examples.

Something similar is true for 2-pt boundary value problems: the nonhomogeneous equation has a solution if and only if the homogeneous one only has zero for solutions.

Examples. Take

$$
y^{\prime \prime}+2 y=0, \quad y(0)=y(1)=0
$$

Something similar is true for 2-pt boundary value problems: the nonhomogeneous equation has a solution if and only if the homogeneous one only has zero for solutions.

Examples. Take

$$
y^{\prime \prime}+2 y=0, \quad y(0)=y(1)=0
$$

Then, $y(x)=A \sin \sqrt{2} x+B \cos \sqrt{2} x$

Something similar is true for 2-pt boundary value problems: the nonhomogeneous equation has a solution if and only if the homogeneous one only has zero for solutions.

Examples. Take

$$
y^{\prime \prime}+2 y=0, \quad y(0)=y(1)=0
$$

Then, $y(x)=A \sin \sqrt{2} x+B \cos \sqrt{2} x$.
Thus $0=y(0)$

Something similar is true for 2-pt boundary value problems: the nonhomogeneous equation has a solution if and only if the homogeneous one only has zero for solutions.

Examples. Take

$$
y^{\prime \prime}+2 y=0, \quad y(0)=y(1)=0
$$

Then, $y(x)=A \sin \sqrt{2} x+B \cos \sqrt{2} x$.
Thus $0=y(0)=0 A+B \cdot 1$.

Something similar is true for 2-pt boundary value problems: the nonhomogeneous equation has a solution if and only if the homogeneous one only has zero for solutions.

Examples. Take

$$
y^{\prime \prime}+2 y=0, \quad y(0)=y(1)=0
$$

Then, $y(x)=A \sin \sqrt{2} x+B \cos \sqrt{2} x$.
Thus $0=y(0)=0 A+B \cdot 1$. So, $B=0$.

Something similar is true for 2-pt boundary value problems: the nonhomogeneous equation has a solution if and only if the homogeneous one only has zero for solutions.

Examples. Take

$$
y^{\prime \prime}+2 y=0, \quad y(0)=y(1)=0
$$

Then, $y(x)=A \sin \sqrt{2} x+B \cos \sqrt{2} x$.
Thus $0=y(0)=0 A+B \cdot 1$. So, $B=0$.
Therefore $y(x)=A \sin \sqrt{2} x$.

Something similar is true for 2-pt boundary value problems: the nonhomogeneous equation has a solution if and only if the homogeneous one only has zero for solutions.

Examples. Take

$$
y^{\prime \prime}+2 y=0, \quad y(0)=y(1)=0
$$

Then, $y(x)=A \sin \sqrt{2} x+B \cos \sqrt{2} x$.
Thus $0=y(0)=0 A+B \cdot 1$. So, $B=0$.
Therefore $y(x)=A \sin \sqrt{2} x$.
Now, $y(1)=A \sin \sqrt{2}$.

Something similar is true for 2-pt boundary value problems: the nonhomogeneous equation has a solution if and only if the homogeneous one only has zero for solutions.

Examples. Take

$$
y^{\prime \prime}+2 y=0, \quad y(0)=y(1)=0
$$

Then, $y(x)=A \sin \sqrt{2} x+B \cos \sqrt{2} x$.
Thus $0=y(0)=0 A+B \cdot 1$. So, $B=0$.
Therefore $y(x)=A \sin \sqrt{2} x$.
Now, $y(1)=A \sin \sqrt{2}$. Since $y(1)=0$, then $A=0$.

Something similar is true for 2-pt boundary value problems: the nonhomogeneous equation has a solution if and only if the homogeneous one only has zero for solutions.

Examples. Take

$$
y^{\prime \prime}+2 y=0, \quad y(0)=y(1)=0
$$

Then, $y(x)=A \sin \sqrt{2} x+B \cos \sqrt{2} x$.
Thus $0=y(0)=0 A+B \cdot 1$. So, $B=0$.
Therefore $y(x)=A \sin \sqrt{2} x$.
Now, $y(1)=A \sin \sqrt{2}$. Since $y(1)=0$, then $A=0$. Thus $y=0$.

Take now the same problem, but nonhomogeneous.

Take now the same problem, but nonhomogeneous.

$$
y^{\prime \prime}+2 y=0, \quad y(0)=0 ; \quad y(1)=1
$$

Take now the same problem, but nonhomogeneous.

$$
y^{\prime \prime}+2 y=0, \quad y(0)=0 ; \quad y(1)=1
$$

Then, as before, $y(x)=A \sin \sqrt{2} x+B \cos \sqrt{2} x$

Take now the same problem, but nonhomogeneous.

$$
y^{\prime \prime}+2 y=0, \quad y(0)=0 ; \quad y(1)=1
$$

Then, as before, $y(x)=A \sin \sqrt{2} x+B \cos \sqrt{2} x$.
$y(0)=0$ again gives

Take now the same problem, but nonhomogeneous.

$$
y^{\prime \prime}+2 y=0, \quad y(0)=0 ; \quad y(1)=1
$$

Then, as before, $y(x)=A \sin \sqrt{2} x+B \cos \sqrt{2} x$. $y(0)=0$ again gives $A \sin 0+B \cos 0=0$ thus $B=0$.

Take now the same problem, but nonhomogeneous.

$$
y^{\prime \prime}+2 y=0, \quad y(0)=0 ; \quad y(1)=1
$$

Then, as before, $y(x)=A \sin \sqrt{2} x+B \cos \sqrt{2} x$.
$y(0)=0$ again gives $A \sin 0+B \cos 0=0$ thus $B=0$.
$y(1)=1$ gives

Take now the same problem, but nonhomogeneous.

$$
y^{\prime \prime}+2 y=0, \quad y(0)=0 ; \quad y(1)=1
$$

Then, as before, $y(x)=A \sin \sqrt{2} x+B \cos \sqrt{2} x$. $y(0)=0$ again gives $A \sin 0+B \cos 0=0$ thus $B=0$. $y(1)=1$ gives $A \sin \sqrt{2}=1$

Take now the same problem, but nonhomogeneous.

$$
y^{\prime \prime}+2 y=0, \quad y(0)=0 ; \quad y(1)=1
$$

Then, as before, $y(x)=A \sin \sqrt{2} x+B \cos \sqrt{2} x$.
$y(0)=0$ again gives $A \sin 0+B \cos 0=0$ thus $B=0$.
$y(1)=1$ gives $A \sin \sqrt{2}=1$ or $A=1 / \sin \sqrt{2}$.
Thus, $y=\frac{\sin \sqrt{2} x}{\sin \sqrt{2}}$.

Let now

$$
y^{\prime \prime}+y=0 ; \quad y(0)=y(\pi)=0
$$

Let now

$$
y^{\prime \prime}+y=0 ; \quad y(0)=y(\pi)=0
$$

Then $y=A \sin x+B \cos x$.

Let now

$$
y^{\prime \prime}+y=0 ; \quad y(0)=y(\pi)=0
$$

Then $y=A \sin x+B \cos x$. Thus since $y(0)=0$ we have $0+B=0$,

Let now

$$
y^{\prime \prime}+y=0 ; \quad y(0)=y(\pi)=0
$$

Then $y=A \sin x+B \cos x$. Thus since $y(0)=0$ we have $0+B=0, B=0 . y=A \sin x$.

Let now

$$
y^{\prime \prime}+y=0 ; \quad y(0)=y(\pi)=0
$$

Then $y=A \sin x+B \cos x$. Thus since $y(0)=0$ we have $0+B=0, B=0 . y=A \sin x . A \sin \pi=0$, so any A is OK.

Let now

$$
y^{\prime \prime}+y=0 ; \quad y(0)=y(\pi)=0
$$

Then $y=A \sin x+B \cos x$. Thus since $y(0)=0$ we have $0+B=0, B=0 . y=A \sin x . A \sin \pi=0$, so any A is OK.

The homogeneous equation has infinitely many solutions.

Let now

$$
y^{\prime \prime}+y=0 ; \quad y(0)=y(\pi)=0
$$

Then $y=A \sin x+B \cos x$. Thus since $y(0)=0$ we have $0+B=0, B=0 . y=A \sin x . A \sin \pi=0$, so any A is OK.

The homogeneous equation has infinitely many solutions.
How about the nonhomogeneous equation

$$
y^{\prime \prime}+y=0 ; \quad y(0)=0, y(\pi)=1 ?
$$

Let now

$$
y^{\prime \prime}+y=0 ; \quad y(0)=y(\pi)=0
$$

Then $y=A \sin x+B \cos x$. Thus since $y(0)=0$ we have $0+B=0, B=0 . y=A \sin x . A \sin \pi=0$, so any A is OK.

The homogeneous equation has infinitely many solutions.
How about the nonhomogeneous equation

$$
y^{\prime \prime}+y=0 ; \quad y(0)=0, \quad y(\pi)=1 ?
$$

By the same calculation, $B=0$.

Let now

$$
y^{\prime \prime}+y=0 ; \quad y(0)=y(\pi)=0
$$

Then $y=A \sin x+B \cos x$. Thus since $y(0)=0$ we have $0+B=0, B=0 . y=A \sin x . A \sin \pi=0$, so any A is OK.

The homogeneous equation has infinitely many solutions.
How about the nonhomogeneous equation

$$
y^{\prime \prime}+y=0 ; \quad y(0)=0, \quad y(\pi)=1 ?
$$

By the same calculation, $B=0$. But then, $y(\pi)=1$ means $A \sin \pi=1$ which is impossible since $\sin \pi=0$.

Let now

$$
y^{\prime \prime}+y=0 ; \quad y(0)=y(\pi)=0
$$

Then $y=A \sin x+B \cos x$. Thus since $y(0)=0$ we have $0+B=0, B=0 . y=A \sin x . A \sin \pi=0$, so any A is OK.

The homogeneous equation has infinitely many solutions.
How about the nonhomogeneous equation

$$
y^{\prime \prime}+y=0 ; \quad y(0)=0, \quad y(\pi)=1 ?
$$

By the same calculation, $B=0$. But then, $y(\pi)=1$ means $A \sin \pi=1$ which is impossible since $\sin \pi=0$. The inhomogeneous equation has no solution.

How about the different type of nonhomogeneous equation

$$
y^{\prime \prime}+y=1 ; \quad y(0)=y(\pi)=0
$$

How about the different type of nonhomogeneous equation

$$
y^{\prime \prime}+y=1 ; \quad y(0)=y(\pi)=0
$$

A particular solution is $y=1$.

How about the different type of nonhomogeneous equation

$$
y^{\prime \prime}+y=1 ; \quad y(0)=y(\pi)=0
$$

A particular solution is $y=1$. The general solution is then $A \sin x+B \cos x+1$.

How about the different type of nonhomogeneous equation

$$
y^{\prime \prime}+y=1 ; \quad y(0)=y(\pi)=0
$$

A particular solution is $y=1$. The general solution is then $A \sin x+B \cos x+1$.

Since $y(0)=0$ we have $0+B+1=0, B=-1$.

How about the different type of nonhomogeneous equation

$$
y^{\prime \prime}+y=1 ; \quad y(0)=y(\pi)=0
$$

A particular solution is $y=1$. The general solution is then $A \sin x+B \cos x+1$.

Since $y(0)=0$ we have $0+B+1=0, B=-1$. The solution is then $A \sin x+1-\cos x$.

How about the different type of nonhomogeneous equation

$$
y^{\prime \prime}+y=1 ; \quad y(0)=y(\pi)=0
$$

A particular solution is $y=1$. The general solution is then $A \sin x+B \cos x+1$.

Since $y(0)=0$ we have $0+B+1=0, B=-1$. The solution is then $A \sin x+1-\cos x$. Now we need $y(\pi)=0$.

How about the different type of nonhomogeneous equation

$$
y^{\prime \prime}+y=1 ; \quad y(0)=y(\pi)=0
$$

A particular solution is $y=1$. The general solution is then $A \sin x+B \cos x+1$.

Since $y(0)=0$ we have $0+B+1=0, B=-1$. The solution is then $A \sin x+1-\cos x$. Now we need $y(\pi)=0$. Then, $A \sin \pi-\cos \pi+1=0$ or $2=0$, impossible.

How about the different type of nonhomogeneous equation

$$
y^{\prime \prime}+y=1 ; \quad y(0)=y(\pi)=0
$$

A particular solution is $y=1$. The general solution is then $A \sin x+B \cos x+1$.

Since $y(0)=0$ we have $0+B+1=0, B=-1$. The solution is then $A \sin x+1-\cos x$. Now we need $y(\pi)=0$. Then, $A \sin \pi-\cos \pi+1=0$ or $2=0$, impossible.

This equation has no solution either.

When the homogeneous equation has nontrivial solutions (that is the same here with nonzero solutions), typically the nonhomogeneous equation has none. When the homogeneous equation only has trivial solutions then the nonhomogeneous equation has admissible solutions.

When the homogeneous equation has nontrivial solutions (that is the same here with nonzero solutions), typically the nonhomogeneous equation has none. When the homogeneous equation only has trivial solutions then the nonhomogeneous equation has admissible solutions.

This is similar to the situation in linear algebra, or even in ordinary algebra. The homogeneous equation $c x=0$ has only trivial solutions (zero) if $c \neq 0$. In this case, the nonhomogeneous equation $c x=b$ always has solutions.

When the homogeneous equation has nontrivial solutions (that is the same here with nonzero solutions), typically the nonhomogeneous equation has none. When the homogeneous equation only has trivial solutions then the nonhomogeneous equation has admissible solutions.

This is similar to the situation in linear algebra, or even in ordinary algebra. The homogeneous equation $c x=0$ has only trivial solutions (zero) if $c \neq 0$. In this case, the nonhomogeneous equation $c x=b$ always has solutions.

On the contrary, if $c=0$, then any x is a solution of $c x=0$. But in this case, the equation $c x=1$ has no solution.

When the homogeneous equation has nontrivial solutions (that is the same here with nonzero solutions), typically the nonhomogeneous equation has none. When the homogeneous equation only has trivial solutions then the nonhomogeneous equation has admissible solutions.

This is similar to the situation in linear algebra, or even in ordinary algebra. The homogeneous equation $c x=0$ has only trivial solutions (zero) if $c \neq 0$. In this case, the nonhomogeneous equation $c x=b$ always has solutions.

On the contrary, if $c=0$, then any x is a solution of $c x=0$. But in this case, the equation $c x=1$ has no solution.

Eigenvalue problems

However, in solving PDEs, we are often interested in precisely the very special and rarer case, when the homogeneous equation does have nontrivial solutions.

Eigenvalue problems

However, in solving PDEs, we are often interested in precisely the very special and rarer case, when the homogeneous equation does have nontrivial solutions.

Consider the problem

$$
y^{\prime \prime}+p(x) y^{\prime}+q(x) y+\lambda y=0 ; \quad y(0)=y(a)=0 \quad(*)
$$

Eigenvalue problems

However, in solving PDEs, we are often interested in precisely the very special and rarer case, when the homogeneous equation does have nontrivial solutions.

Consider the problem

$$
y^{\prime \prime}+p(x) y^{\prime}+q(x) y+\lambda y=0 ; \quad y(0)=y(a)=0 \quad(*)
$$

where λ must be determined so that (*) does have nonzero solutions.

Eigenvalue problems

However, in solving PDEs, we are often interested in precisely the very special and rarer case, when the homogeneous equation does have nontrivial solutions.

Consider the problem

$$
y^{\prime \prime}+p(x) y^{\prime}+q(x) y+\lambda y=0 ; \quad y(0)=y(a)=0 \quad(*)
$$

where λ must be determined so that $\left(^{*}\right)$ does have nonzero solutions.

This is a typical eigenvalue problem.

Eigenvalue problems

However, in solving PDEs, we are often interested in precisely the very special and rarer case, when the homogeneous equation does have nontrivial solutions.

Consider the problem

$$
y^{\prime \prime}+p(x) y^{\prime}+q(x) y+\lambda y=0 ; \quad y(0)=y(a)=0 \quad(*)
$$

where λ must be determined so that $\left(^{*}\right)$ does have nonzero solutions.

This is a typical eigenvalue problem.

Example.

Example. Consider the eigenvalue problem (find all λ so that the problem below has a nonzero solution)

$$
y^{\prime \prime}+\lambda y=0, \quad y(0)=y(\pi)=0
$$

Example. Consider the eigenvalue problem (find all λ so that the problem below has a nonzero solution)

$$
y^{\prime \prime}+\lambda y=0, \quad y(0)=y(\pi)=0
$$

Take first $\lambda>0$, i.e., $\lambda=\mu^{2}$.

Example. Consider the eigenvalue problem (find all λ so that the problem below has a nonzero solution)

$$
y^{\prime \prime}+\lambda y=0, \quad y(0)=y(\pi)=0
$$

Take first $\lambda>0$, i.e., $\lambda=\mu^{2}$.

$$
y^{\prime \prime}+\mu^{2} y=0, \quad y(0)=y(\pi)=0
$$

Example. Consider the eigenvalue problem (find all λ so that the problem below has a nonzero solution)

$$
y^{\prime \prime}+\lambda y=0, \quad y(0)=y(\pi)=0
$$

Take first $\lambda>0$, i.e., $\lambda=\mu^{2}$.

$$
y^{\prime \prime}+\mu^{2} y=0, \quad y(0)=y(\pi)=0
$$

The characteristic equation is $r^{2}+\mu^{2}=0$,

Example. Consider the eigenvalue problem (find all λ so that the problem below has a nonzero solution)

$$
y^{\prime \prime}+\lambda y=0, \quad y(0)=y(\pi)=0
$$

Take first $\lambda>0$, i.e., $\lambda=\mu^{2}$.

$$
y^{\prime \prime}+\mu^{2} y=0, \quad y(0)=y(\pi)=0
$$

The characteristic equation is $r^{2}+\mu^{2}=0$, thus $r= \pm i \mu$.

Example. Consider the eigenvalue problem (find all λ so that the problem below has a nonzero solution)

$$
y^{\prime \prime}+\lambda y=0, \quad y(0)=y(\pi)=0
$$

Take first $\lambda>0$, i.e., $\lambda=\mu^{2}$.

$$
y^{\prime \prime}+\mu^{2} y=0, \quad y(0)=y(\pi)=0
$$

The characteristic equation is $r^{2}+\mu^{2}=0$, thus $r= \pm i \mu$.

$$
y^{\prime \prime}+\lambda y=0, \quad y(0)=y(\pi)=0
$$

$$
y^{\prime \prime}+\lambda y=0, \quad y(0)=y(\pi)=0
$$

Therefore, $y=A \sin \mu x+B \cos \mu x$

$$
y^{\prime \prime}+\lambda y=0, \quad y(0)=y(\pi)=0
$$

Therefore, $y=A \sin \mu x+B \cos \mu x$.
Since we have $y(0)=0$,

$$
y^{\prime \prime}+\lambda y=0, \quad y(0)=y(\pi)=0
$$

Therefore, $y=A \sin \mu x+B \cos \mu x$.
Since we have $y(0)=0$, we have $0+B=0, B=0$.

$$
y^{\prime \prime}+\lambda y=0, \quad y(0)=y(\pi)=0
$$

Therefore, $y=A \sin \mu x+B \cos \mu x$.
Since we have $y(0)=0$, we have $0+B=0, B=0$.
Then, $y=A \sin \mu x$.

$$
y^{\prime \prime}+\lambda y=0, \quad y(0)=y(\pi)=0
$$

Therefore, $y=A \sin \mu x+B \cos \mu x$.
Since we have $y(0)=0$, we have $0+B=0, B=0$.
Then, $y=A \sin \mu x$. But we also need to have $y(\pi)=0$.

$$
y^{\prime \prime}+\lambda y=0, \quad y(0)=y(\pi)=0
$$

Therefore, $y=A \sin \mu x+B \cos \mu x$.
Since we have $y(0)=0$, we have $0+B=0, B=0$.
Then, $y=A \sin \mu x$. But we also need to have $y(\pi)=0$. This means $A \sin \pi \mu=0$,

$$
y^{\prime \prime}+\lambda y=0, \quad y(0)=y(\pi)=0
$$

Therefore, $y=A \sin \mu x+B \cos \mu x$.
Since we have $y(0)=0$, we have $0+B=0, B=0$.
Then, $y=A \sin \mu x$. But we also need to have $y(\pi)=0$. This means $A \sin \pi \mu=0$, and therefore $\mu=k$, for any $k \in \mathbb{Z}$.

$$
y^{\prime \prime}+\lambda y=0, \quad y(0)=y(\pi)=0
$$

Therefore, $y=A \sin \mu x+B \cos \mu x$.
Since we have $y(0)=0$, we have $0+B=0, B=0$.
Then, $y=A \sin \mu x$. But we also need to have $y(\pi)=0$. This means $A \sin \pi \mu=0$, and therefore $\mu=k$, for any $k \in \mathbb{Z}$. The eigenvalue problem has infinitely many positive solutions, $\lambda=k^{2}: \lambda=1,4,9,16, \ldots$

$$
y^{\prime \prime}+\lambda y=0, \quad y(0)=y(\pi)=0
$$

$$
y^{\prime \prime}+\lambda y=0, \quad y(0)=y(\pi)=0
$$

How about negative solutions, $\lambda=-\mu^{2}$? Then, the characteristic equation $r^{2}=\mu^{2}$

$$
y^{\prime \prime}+\lambda y=0, \quad y(0)=y(\pi)=0
$$

How about negative solutions, $\lambda=-\mu^{2}$? Then, the characteristic equation $r^{2}=\mu^{2}$ has solutions $r= \pm \mu$,

$$
y^{\prime \prime}+\lambda y=0, \quad y(0)=y(\pi)=0
$$

How about negative solutions, $\lambda=-\mu^{2}$? Then, the characteristic equation $r^{2}=\mu^{2}$ has solutions $r= \pm \mu$, so that $y=A e^{\mu x}+B e^{-\mu x}$. Now we need $A+B=0$

$$
y^{\prime \prime}+\lambda y=0, \quad y(0)=y(\pi)=0
$$

How about negative solutions, $\lambda=-\mu^{2}$? Then, the characteristic equation $r^{2}=\mu^{2}$ has solutions $r= \pm \mu$, so that $y=A e^{\mu x}+B e^{-\mu x}$. Now we need $A+B=0$ and $A e^{\mu \pi}+B e^{-\mu \pi}=0$.

$$
y^{\prime \prime}+\lambda y=0, \quad y(0)=y(\pi)=0
$$

How about negative solutions, $\lambda=-\mu^{2}$? Then, the characteristic equation $r^{2}=\mu^{2}$ has solutions $r= \pm \mu$, so that $y=A e^{\mu x}+B e^{-\mu x}$. Now we need $A+B=0$ and $A e^{\mu \pi}+B e^{-\mu \pi}=0$. From the first equation, $A=-B$,

$$
y^{\prime \prime}+\lambda y=0, \quad y(0)=y(\pi)=0
$$

How about negative solutions, $\lambda=-\mu^{2}$? Then, the characteristic equation $r^{2}=\mu^{2}$ has solutions $r= \pm \mu$, so that $y=A e^{\mu x}+B e^{-\mu x}$. Now we need $A+B=0$ and $A e^{\mu \pi}+B e^{-\mu \pi}=0$. From the first equation, $A=-B$, thus $B e^{-\mu \pi}=-A e^{\mu \pi}=B e^{\mu \pi}$,

$$
y^{\prime \prime}+\lambda y=0, \quad y(0)=y(\pi)=0
$$

How about negative solutions, $\lambda=-\mu^{2}$? Then, the characteristic equation $r^{2}=\mu^{2}$ has solutions $r= \pm \mu$, so that $y=A e^{\mu x}+B e^{-\mu x}$. Now we need $A+B=0$ and $A e^{\mu \pi}+B e^{-\mu \pi}=0$. From the first equation, $A=-B$, thus $B e^{-\mu \pi}=-A e^{\mu \pi}=B e^{\mu \pi}$, $B\left(e^{-2 \mu \pi}-1\right)=0$, thus $B=0$ or $\mu=0$. But $\mu>0$ by assumption. Thus $B=0$, so that $y=0$.

$$
y^{\prime \prime}+\lambda y=0, \quad y(0)=y(\pi)=0
$$

How about negative solutions, $\lambda=-\mu^{2}$? Then, the characteristic equation $r^{2}=\mu^{2}$ has solutions $r= \pm \mu$, so that $y=A e^{\mu x}+B e^{-\mu x}$. Now we need $A+B=0$ and $A e^{\mu \pi}+B e^{-\mu \pi}=0$. From the first equation, $A=-B$, thus $B e^{-\mu \pi}=-A e^{\mu \pi}=B e^{\mu \pi}$, $B\left(e^{-2 \mu \pi}-1\right)=0$, thus $B=0$ or $\mu=0$. But $\mu>0$ by assumption. Thus $B=0$, so that $y=0$.

$$
y^{\prime \prime}+\lambda y=0
$$

$$
y^{\prime \prime}+\lambda y=0
$$

Finally, we need to take $\lambda=0$.

$$
y^{\prime \prime}+\lambda y=0
$$

Finally, we need to take $\lambda=0$. Then $y^{\prime \prime}=0$, and it follows that $y=a x+b$,

$$
y^{\prime \prime}+\lambda y=0
$$

Finally, we need to take $\lambda=0$. Then $y^{\prime \prime}=0$, and it follows that $y=a x+b$,thus $y(0)=0$ implies $b=0$,

$$
y^{\prime \prime}+\lambda y=0
$$

Finally, we need to take $\lambda=0$. Then $y^{\prime \prime}=0$, and it follows that $y=a x+b$,thus $y(0)=0$ implies $b=0$, while $y(\pi)=0$ implies $a=0$.

$$
y^{\prime \prime}+\lambda y=0
$$

Finally, we need to take $\lambda=0$. Then $y^{\prime \prime}=0$, and it follows that $y=a x+b$,thus $y(0)=0$ implies $b=0$, while $y(\pi)=0$ implies $a=0$.

So, there are no solutions for $\lambda \leq 0$.

$$
y^{\prime \prime}+\lambda y=0
$$

Finally, we need to take $\lambda=0$. Then $y^{\prime \prime}=0$, and it follows that $y=a x+b$,thus $y(0)=0$ implies $b=0$, while $y(\pi)=0$ implies $a=0$.

So, there are no solutions for $\lambda \leq 0$.
All eigenvalues are: $\lambda=1,4,9,16, \ldots, n^{2}, \ldots$

